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Short Bearing Analysis Applied to
Rotor Dynamics
Part I: Theory

A derivation of the Reynolds equation is presented in fixed Cartesian coordinates which
allows rapid solution of the fluid-film bearing forces using the short bearing approxima-
tion. The solution for the fluid-film pressure profile is given in terms of the instanta-
neous position and velocities expressed in the fixed reference frame. The effects of cavi-
tation are approximated by deleting subambient pressures when integrating the pres-
sure profile. The equations for the instantaneous whirl rate and curvature are presented
and discussed in relation to journal bearing behavior. Three-dimensional plots of the
pressure profile for selected dynamic conditions give a vivid picture of the fluid pressure
field. Dimensionless plots of the stiffness and damping coefficients for the short bearing
are presented. The results of a linearized stability analysis are presented and compared
to other published results. Results of transient response analysis will be presented in

Part 2.

Introduction and Statement of the Problem

As the speeds of the machinery using journal bearings increased
after the turn of the century, the interest in the development of
journal bearing theory increased considerably. The users of such
machinery were reporting large vibrational amplitudes under cer-
tain conditions of loading and speed which in turn caused large
forces to be transmitted to the system foundation and the system’s
component parts.

Newkirk [1]' reported in 1924 the first recorded instance of
bearing instability. He demonstrated that under certain combina-
tions of speed and loading, the journal center did not remain fixed
as predicted by the steady-state Reynolds equation, but precessed
or orbited about the equilibrium position at a speed approximately
equal to half the rotational speed. This phenomenon was termed
oil whip or whirl and is a self-excited motion. (See also references
[2-10].)

A complete dynamical analysis of such a system requires that
the hydrodynamic force terms be coupled to the dynamical equa-
tions of motion of the rotor (journal), including the external load-
ing forces on the system and the unbalance of the journal. Figs. 1
and 2 show the typical journal bearing schematic, force balance,
and unbalance representation which will be used in the following
analysis.

I Numbers in brackets designate References at end of paper.
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The resulting equations of motion for the complete system are
highly nonlinear and the stability characteristics have been exam-
ined primarily from a linearized or perturbation analysis about the

-equilibrium position of a balanced journal under unidirectional

loading.

The bearing stability obtained from linearized theory only pre-
dicts the threshold of stability. It does not give any information as
to the magnitude of the journal orbit when operation is above the
whirl threshold speed. The linearized theory predicts that the jour-
nal motion will grow exponentially or become unbounded when the
rotor is operated above the whirl threshold speed. In actuality, the
journal motion is bounded and the motion forms limit cycles. ;

With the aid of the high-speed digital computer and the proper
formulation of the hydrodynamic force expressions, the complete
nonlinear motion of the journal bearing system may be obtained
through the use of numerical methods for integrating the govern-
ing equations of motion.

In addition to the determination of the journal motion under ar-
bitrary loading above and below the stability threshold, it is equal-
ly important that the bearing forces and the bearing dynamic
transmissibility characteristics be determined. The results of such
an analysis follows.

Analysis of the System

This section contains the derivation of the equations of motion
for the journal bearing. Fig. 1 gives a schematic of a typical journal
bearing. The clearance between the journal and bearing has been
greatly exaggerated to clarify the representation of the bearing pa-
rameters. The journal center, 0}, is free to move about in the imagi-
nary clearance circle depicted by the dashed circle in Fig. 1. The
radial displacement of the journal center, oj, from the bearing cen-
ter, op, is denoted as the eccentricity, e, of the journal, and when
divided by the clearance, ¢, the eccentricity ratio, ¢, may then take
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on values only from zero to unity. Unity represents bearing failure,
while a value of zero has the journal perfectly centered in the bear-
ing. See Fig. 2 for a typical force balance. It is therefore possible to
represent the journal motion by a point moving about in a unit
clearance circle, where all displacements are made dimensionless
by dividing them by the clearance. This representation will be
used extensively throughout the following analysis.
The Navier-Stokes equations can be expressed in vector nota-
tion as
P2 _Sp4 B+ w[%%(?-m + V) (1)
" Dt
For the purpose of this particular derivation, the incompressible
fluid film between two flat plates of length ! and width b, sepa-
rated by some small distance b = f(x, 2}, will be examined (see Fig.
3). If in addition the body forces are neglected, equation (1) may
be expressed as follows:?
Du
P i
Furthermore, if the ratio of h/1 is restricted to be much less than
unity, i.e., h/1 « 1, it may be concluded that the reduced Reynolds
number, Re, is much much less than unity and it is hence possible
to neglect the inertia force terms on the left of equation (2).
Imposing the conditions of

- TP+ v 2

p = constant

Axial velocity of the bearing surfaces = 0.0
8]1/82 = 05

the following form of Reynolds’ equation may be obtained from
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Short journal bearing configuration

Fig. 1

It is now desired to relate this solution to the geometry of the
journal bearing. The first approach considers rotating coordinates,
in which the film thickness may be expressed as (see Fig. 4)

B(6" = C(1 + € cos 0 (4

Linear combinations of the following components of motion will
be considered.

(a) Rotation of journal about 0}, at w;.

(b) Rotation of bearing about o, at wp.

(c) Radial motion of oj along the line of centers.

(d) Precession of 0; about 0, with angular velocity, w, = é.

If the film thickness is “unwrapped” the velocities due to (a)
and (b) above may be expressed by the following components:

Uy =(R+ Quw, ® Ruw,

equation (2):

3 PR
W OPy b I OP
U ox 9zt 9z

]

5
Fol

/
X

oh [ )
= 12(vy — vy) + 8y —uy) 5+ B .(“1 +uy) (3)

Uy = Rw; cos @ ~ Ruw;

V1:O

Since

Vy, = Rw; sin a.® aRw; = wjg%,
dh 1 dh
tan (0 =70 = R aor

2 This equation can also be applied in journal bearing analysis for the case

of a compressible fluid due to the order of magnitude of the term 0(p.&).

Nomenclature

and for e < 1,

B = body forces per unit volume

b = width of slider bearing

Cij = damping coefficients

C, ¢ = journal clearance

D = journal diameter

Eo, ES = eccentricity ratio calculated using
the total resultant journal load for P in
the Sommerfeld equation

E,., EMU = unbalance eccentricity ratio =
e,/c

EN = ratio of rotating load angular speed
= wpolw;

e = radical journal center displacement, L

e, = unbalance eccentricity, L

¢4, ¢ = unit vectors referenced from the
bearing center ,

¢~, ¢ = unit vectors referenced from the
instantaneous center of curvature

Fy = magnitude of rotating load, F

F,, F, = force due to film in x and y coor-
dinate directions respectively, F

F,, F, = dimensionless forces from fluid
film in x and y directions

g = acceleration of gravity, L/T?
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H = dimensionless film thickness = h/ec

h = film thickness, L

h = stepping increment of independent
variable

i, j, k = unit vectors in the fixed x-y-z coor-
dinate directions

K;; = stiffness coefficients, F/L

L = length of journal, L

[ = length of slider, L

M;j, m; = effective mass of journal, F-T?/L

0p = bearing center

oj = journal center

P, p = pressure, F/L2

P = projected load = W/(L X D), F/L?

P = dimensionless pressure = (p/((N, +
N X ) X (c/L)?

R, r = journal radius, L,

Re = Reynolds number = UL/»

Re* = modified Reynolds number = Re X
(h/1)

S = Sommerfeld number = uN/P(R/c)?,
rev.

SS, Sg = short bearing Sommerfeld num-
ber (capacity number, Ocvirk number) =

S X (L/D)?, rev.

t = time, T

U; = velocity, L/T

i = vector representation of velocity, L/T

u = velocity component in x-coordinate di-
rection, L/T

Vi = velocity, L/T

V,, = velocity of a point on the journal sur-
face, L/T

Vq = velocity of a point on the bearing sur-
face, L/T

v = velocity component in the y-coordinate
direction, L/T )

W = effective weight of the journal, F

W; = velocity, L/T

w = velocity component in z-coordinate di-
rection, L/T

X = dimensionless displacement = x/c

X = dimensionless velocity = &/cw;

x, x1 = displacement of journal in x-coordi-
nate direction, L.

x9 = displacement of bearing in x-coordi-
nate direction, L.

x; = solution at ith step of independent

Transactions of the ASME

Downloaded From: http://tribology.asmedigitalcollection.asme.or g/ on 07/05/2013 Ter ms of Use: http://asme.or g/terms



7 B X
By neglecting the stretch effect in equation (3), the contributions < \ Wy
due to rotation wj and w; are given by e %
15 B < 1 ok, 0k \y J
IEV'(—M Vp)}a,b:(wa Rw )RBO’ 20.)]'8—6, \’¥
o (5) \en
=
[E 9 (9D, = (w, + w)ot MT}\
6 e ' 89 >\
For the radial motion along the line of centers it can be shown L_ B
that \
U, = ésin 0’ ¥
V, = écos 0’
[]1 — I/I =0 y
Therefore
1o, s 1 3k ' TN TR
[6\7 (I VP)], = (¢ sin §") B 38/ + 26 cos 6§ Y\XwT
but by differentiating equation (4), it follows that -Md \ Fy
3 _ ~o
[15- (E- VP)], = é[sin® G’%’ + 2 cos 6] \
6w (6)
ah ® Fx

= 2~ oF

J
For precession, it is known that every point in the journal has
velocity e and is directed normal to the ling of centers. Therefore

the following velocity components are due to precession:

2
. F Me,, w
U, =—e¢ cos ' 0 H
— 3 !
Zz = i/(P 5112)9 Fig. 2 Unbalance representation (above) and a typical force balance
1= "1 =

Substituting these expressions into equation (3) yields

1o (B = e ,oh b in 67
E[’V'(’ N4 =% ¢ cos 0’7 + 2¢d sin
Al )
= 205y
Combining equations (5), (6}, and (7) results in
1= s oh ah
6[V- (EVP)] = (w, + w; — 20) - 50’ 3 (8a)
or
1,1 o B aP a hd ah Bll
ool Pl = — (= )] =(w, + w; -2
sl s 507 "ozl 82)] (w, Orsgi T 207 )
(80)
This expression, i.e., equation (8), is the Reynolds equation for a
plain journal bearing using rotating coordinates, where 8 is the
angle measured from the line of centers in the positive coordinate
direction. This form of Reynolds’ equation is the expression that Fig. 3 The plane slider bearing
Nomenclature
variable B = phase angle between the journal dis- X = root to the characteristic equation of
Y = dimensionless displacement = y/c placement vector and the unbalance ec- journal equations of motion, T—!
Y = dimensionless velocity = y/cw; centricity vector, deg . u = viscosity, F-T/L?
v, y1 = displacement of journal in y-coordi- - ¢, = eccentricity ratio = e/c » = kinematic viscosity, = u/p, Lo/T
nate direction, L ¢p = eccentricity calculated from equation  p = density, F/gL?
yy = displacement of bearing in the y-coor- of Sg p= instantaneous radius of curvature, LL
dinate direction, L n = ratio of rotating load velocities = = ¢ = whirl velocity about bearing center,
7 = dimensionless distance along axial or wpo/wj T1
z-direction = z/L " = angular distance from positive line of ¢ = attitude angle, deg
z = distance along z-coordinate, L centers in rotating coordinate set Q, w; = journal angular velocity, T—1!
« = ratio of angular velocities = w;/(wp + # = angular distance from the positive x- Qg = speed parameters, = w;/v/ Wr/mjc
wj) . axis in the fixed x-y coordinate set wp = bearing angular velocity, 7!
« = angle between velocities Rw; and (R + § = instantaneous angular velocity about ws = speed parameter, = wj/m
C)wp, ~(1/R)(oh/a6) the center of curvature, T—1! w = angular speed defined as wy + w;, T™!
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Fig. 4(a). Journal bearing in rotating coordinates

Fig. 4(b).

Journal bearing profile unwrapped

most of the work in this field is based on. To avoid coordinate
transformations, the following derivation in fixed Cartesian coor-
dinates is presented.
The following unit vectors will be used to express the derived ve-
locity components (see Fig. 5):
i=—cos 0n,—sin 07,
j=-sin 6 ng + cos 071,
g = —cos 0i— gin 0j
Mg = —Sin 01 + cos 6j (9)
The velocities of the bearing and journal centers are as follows:
Vip = %41 + 34
Vio; = % + 4]

The velocity of point *

Vo, + wy XR

VQ =
= w1 + 3] + Rwy 7,
and also
Vo = Ving + u N
or
Vi=Vg'ng = _«’{’1 cos 6 — 3}1 sin 4 (10)
and
= Vg*Ng = weR — 3, sin8 + y cos 6 (11)

For point “P,” it is necessary to relate the velocities to Vg and
Us.

The Rw; component is not in line with the Rw, component; they
differ by the angle «. For small displacements these are related

small angles and it is thus possible to approximate « as follows:

tana%azﬂl— N_B_Ig:i%
Ax 8x R 80
Also
tan @ = sinae = «o
For the theta direction
Vely = Rw; cos o = Ruw;
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and for the radial direction
)
Vel, 98

So, it is now possible to express the velocity of point “P” as

= Rw; sina ® w;>=

Vp = %1 + 9, + Rw; 7y + w’a@ Mg
Therefore
Uy =Vpe 7y =—4, sin 6 + ¥, cos § + Rw, (12)
and
oh
Vo =Vpe nﬁz—xzcos9—1‘251n€+w89 (13)

By neglecting the stretch effect of equation (3), i.e., h X (a/
ax) (Ui + Uy), substitution of the appropriate velocities into that
equation gives

= %(111 112) + AV, -V

oh

Dpg T (K

. 1 8n
PRI 2cos€)+R@ sin )
= (= (2 si 9+l—]—lcos9)
Yo TV "YU R 56

={w, + w

In addition, by neglecting the % %% terms,
1. B o
—6-[v (M P = (w, +w)w[+( %) (2 cos 6)

— (A, — ¥9)(2 sin 6) (14)

But for small deflection, the film thickness, &, is given as (see Fig.
5)

h=c—(x— x) cos 6~ (v, v} sin (15)
Since from equation (4) we can write
6) =c— ecos (06— (90— ¢))
=¢~ecos 0 sing —esinf cos ¢
where
esing =%, — xy, € cos ¢ = v, — ¥y
It is now possible to rewrite equation (14) as follows:
1,1 8 ,i°a8p 8 I ah 8/2
E[ﬁae(u 80 az(u az)]‘( TR
= (w, + w){(x, — xy) sin ¢ — (v, — v, cos 6]
— (% — #)(2 cos ) — (3, — 9,)(2 sin 0) (16)

It must be remembered that in this equation the “6” is measured
from the fixed x-axis and should not be confused with the rotating
coordinate set where the #’ is measured from the line of centers.

Two basic approaches to the solution of equation (16) have been
reported in the literature. If it is assumed that the journal bearing
is very long, then it is possible to neglect the fluid flow and pres-
sure gradients along the z-axis and hence reduce equation (16) to

1 & A oh oh

BR? ae(u ae) = T W)y + 25 1

90
This solution is known as the long bearing solution and was first
solved by Sommerfeld, who used an adroite substitution and suc-
ceeded in integrating equation (11).

On the other hand, if it is assumed that the bearing is relatively
short, the appropriate approach is to neglect the flow in the theta
direction due to pressure gradients and arrive at

19 4% aP oh ok

() =@ rw)gp+ 2,

60z L 8z (18)

which is known as the governing equation for the short bearing so-
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Fig. 5 Journal bearing in fixed Cartesian coordinates

“lution. This approach to Reynolds’ equation is the basis for the
computer program and resulting analysis to be presented in the
following sections.

To have a better understanding of when the given assumption is
a valid one, the solid curves in Fig. 6 were drawn from data for a fi-
nite full journal bearing (reference [11], pp. 86-88). Those data
were reported to have come from digital computer solutions of the
general Reynolds equation. In addition, the corresponding Som-
merfeld number obtained from the short bearing solution is plot-
ted for the same length to diameter ratios. It is easy to see that the
assumption is very good for L/D ratios of % or less, or for L/R < 1.
It is also apparent that more deviation exists at larger eccentricity
values for L/R > 1, whereas for smaller values the agreement is
very good indeed.

The reason for the deviation in the short bearing solution has
been explained by Ocvirk [4] to arise from the higher pressures
predicted due to neglecting the theta pressure flow in the journal.
However, by realizing the limitations of the solution there should
be no confusion about the results and conclusions obtained from
the given theory.

Dynamical Equations of Motion

The Reynolds equation has been derived in the previous section
for the plane slider and by proper substitution and assumptions, it
has been reduced to the following equation which is valid for a
“short” journal bearing:

o B oap, oh oh

L D) = (w, + w)— 228
az(Gu 9z (@ + ) 80 281‘, (19)

In fixed coordinates, the film thickness, h, is given by
h=c¢—xcosf—ysinb (20)

This equation is valid for a journal bearing that has no axial mis-
alignment and was derived by considering small motions in the x
and y directions to be linearly related. In addition, by limiting the
motion of the bearing to rotation, wp, all displacements will be rel-
ative to the bearing center, 0.

Equation (19) can be integrated directly and by applying the
boundary conditions

P(0,0) = P(6,L) =0 (21)

to evaluate the two constants of integration; the following equation
results:

(6, 2) :——u“z(;g D, + wj)-g% + 2:—?] (22)
From 20)
bh = x8in6— 1y cos (23)
06 N
and
g—? = —x cos — 7y sin 6 (24)
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Fig. 6 Comparison of finite length and short bearing solutions
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The increment of force on the journal is given as

AF = P(0, 2) Rd0dz 7,

where
Ng = —cos 01 — sin 0j
Therefore
AF, = (AF+1)i = —{P(6, 2) Rdfdz cos 0]i (25)
and
AF, = (AF+j)j = - P(0, 2)Rd0dz sin j (26)

where the total force component is
F,=-[[P6,2)R cos 6dbdz

and
F, =—[]P(8,z)R sin 6dbdz

The result of integrating over the length of the bearing and substi-
tuting equations (23) and (24) leads to the following equations:

P
{Fy} -

{?"(wj + w)(x sin 0~y cos 6) — 2(¥ cos @ + ¥ sin 6)
70 (¢ — x cos 0 — v sin 8)°

]JLRL3
5 -

cos 0
{sin 0 b0 (27
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The integral of equation (27) must be integrated very carefully
since a subambient pressure will not be permitted to exist in the
fluid film. This follows from reports on experimental test rigs as
discussed by reference [11], p. 435.

It is possible to put equation (27) into dimensionless form if the
following representation is used:

(=2 yv=2 w= T S
A‘L_,Ivc,w_—warwj,;\_cwj,l_cwj, w
then (27) becomes
L - BL'Rw o (X~ 2¥a) sin 6 — (Y + 2Xa) cos 0
Fy} Ty 0 (1—X cos § — Y sin 6)3
cos 0
0 (2
><{sin Q}d (28)

The equations of motion of the journal can be derived by consid-
ering Newton’s second law:

(Zh),,, = ma;, (29)
A position vector to the center of mass of the journal is
P, =(x+e,coswhi+ (v + e, sinwij (30)

where the mass center is located a radial distance of e, from the
geometric center of the journal. Then the acceleration is given by
A, =(¥—e,w?cos w,Ni+ (v — e,w;f sinw;)j  (31)
therefore
mj(i:— e,w;? cos wif) = (ZF)x (32a)
m]-(,\.v'* e,w;t sin wl) = (ZF)vy (320)

where the right-hand side of the given equations represents all
loading on the journal, including the forces given by equation (27)
that are developed in the fluid film. By letting

w, = Q, QU = T,gci:Eu

and dividing through by m;cQ? the equations become

a*X F, LRLw o
= B 7 . + X, 7, X, ¥
a7 = Bucos T+ iy cos (7) + 50 Gy £AX 1, 1)
FX
o + 33
m;cQ (33)
dZY FO A [lRL:}(-U = - v oV
~E si b PO E (X, Y, X,
72 = BusinT + oY sin (n7) 2,0 X , Y)
FY
— 34
n1,e Q2 (34)
where:

Fy = rotating load at some multiple of the journal frequency.

FX=FY = constant loading in x and y direction, respectively.

Also, other loading can be added as noted by +. . .

The given equations are for a vertical journal bearing since we
have not included the gravity loading in the equations of motion.

Journal Precession Rate and Radius of Curvature

When a journal bearing is acted upon by some unbalance force
or other cyclic forcing function the journal tends to move in an
orbit due to the forces acting upon it. If the orbit encloses the cen-
ter of the journal then it possible to think of the distance from the
bearing center to the journal center as the radius of the path and
the angular velocity with respect to the bearing center as the whirl
frequency. Referring to Fig. 7, these quantities would be radius e
and angular velocity ¢.

These values may be expressed in terms of the displacements
and velocities, x, ¥, £, ¥ by the following procedure. The velocity of
the journal center may be expressed as

V, =xi+ )

e, + cpfd

The relation among the unit vectors is as follows:

il

I
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e?r = cos ¢i + sin ¢j
% = —sin i+ cos ¢
x=ecos¢p, v=e8in¢
So
Vid, = gq; = i+ ¢, +§|j-+d) = —sin ¢& + cos Q&
Therefore

elcos gy - singx) _ #p — yi
e e e

QA:

orsince ¢ = x2 4+ y? then,

q; Xy — %
- xz + yi
In dimensionless form
¢ XY YX
QXY (35)
where
X=x/c, Y=1v/c
and
X = i/c, Y = $/c, with Q@ = w; as before.
The radius, e, is given by
e=cxVvXt+y? (36)

However, it is obvious that (36) has little meaning if the journal
orbit does not enclose the bearing center, op.

The equations for the instantaneous radius of curvature p and
angular velocity § will now be developed.

The velocity can be expressed for this purpose as

V=V = péﬁ{?t

where

p = instantaneous radius of curvature

0 = instantaneous angular velocity about 0,
The acceleration is expressed as

d . aes
a; :E(V@) = Vé, + V—jiL

VZ
= Q¢ + ) ¢
But since
a, = ¥i + ¥j
and
1?2
Bt gy = o = Fie gy = i gy

The new unit vectors are determined as follows:

Fig. 7 Typical journal trajectory illustrating the instantaneous radius of
curvature
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V:I/¢t:ﬁ+5’j

therefore
b =05 + i)
and
1,.. ..
bo = nde = S350
Hence
i, =—/V
and
j . ¢" = x/V
So, from equation (38),
Vg — X9
72
Vi/p = 7
Solving for p and § = V/p results in
p = VO/(¥% — x¥) (38)
and
VX - X0
since

V=gt + 42
In dimensionless form, the instantaneous whirl ratio is given by
6 _¥X-Xxv (40)

Q X2 + Ir?

This expression is meaningful for any orbit path the journal
might traverse and will be easily calculated since it involves quan-
tities readily available in the method of solution of the journal
orbit.

The Fluid Film Pressure Profile

The pressure in the fluid film was given in fixed coordinates by
equation (22). Substituting equations (23), (24) into equation (22)
and expressing the result in dimensionless form gives

- P(o, 7) G _ B
P= /(N'+N')() 61Z (1~ 7)
« [~X gin0 + Y cosd + 20(X cosd + ¥ sin@)] (41)
(1—-Xcos6—Ysind)3
where
7 i g Wi oy X 1 odx
Z‘L’a_wb+wj’x_ ’A‘cwjd[

If no values of negative pressure are allowed to exist in the fluid
film, then all P’s less than zero are equated to zero. The given
equation was programmed on the digital and the results plotted
via an automatic plotter. Various cases were considered and are
presented as Figs. 8-12.

The values of the dimensionless displacements and velocities are
given at the top of the figures. An end view of the section at the
bearing midspan is given in the upper left corner with the pressure
profile represented as radial lines. The center figure is a three-
dimensional plot of the “unwrapped” pressure profile. At the bot-
tom of the figure is the film thickness, H, plotted versus angular
distance, 6.

The maximum dimensionless pressure increases as the journal
moves from near the center (Fig. 8) out to X = 0.2, Y = —0.10 (Fig.
9). Fig. 10 shows the uncavitated pressure surface for the case of
Fig. 9. The negative pressures cannot be sustained in the fluid film
and therefore cavitates. In Fig. 11 the case of X = 0.5, Y = —0.7 is
given in small velocity which results in a slight increase of peak
. pressure above that for the static value (Ppmax = 210.38).
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Fig. 10 Uncavitated pressure profile for X = 0.2, Y= —0.10, X = Y = 0
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Y=-07X=Y=—0.05

Fig. 12 Pressure profile, pressure surface, and film thickness for X = ¥ =
0.0, X=~Y=0.5

Fig. 12 has been given the condition of synchronous whirl® at an
eccentricity of 0.5. All cases plotted were for a = 1, i.e., wp = 0.

If it is assumed that gravity is acting in the negative y-coordi-
nate direction, then the term (—g/cQ2) must be added to (34) to
account for this effect.

The solution of equations (33) and (34) will give the journal
orbit as a function of dimensionless time, 7. Numerical methods
will be used to integrate these equations of motion forward in time.

Stability Analysis for Small Displacements

The equation for the fluid-film force components has been de-
rived for the short bearing model and is given by equation (28). It
is now possible to obtain from this equation the stiffness and
damping coefficients which are given as

oF, . .
Ky=—373i=12j=12

(42)

9!
!
|
)
I

These coefficients can now be inserted into the equation of motion

3 The journal center is precessing in the bearing at the journal rotational
angular velocity.
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of the journal and a stability analysis performed. Plots of the re-
sulting dimensionless values used in the analysis are presented in
Figs. 13(a) and 13(b). The equation to be examined is given as fol-
lows:

X, + CyyX, + KX, = 0

where )
LGS G YR RO/ ST VR Y
W ST Myw T oMw
The assumed solution is of the form
X, =Ae¥, X, = Bét
Making these substitutions results in the following equations:
. A%+ f“x + Ky, cmj\ + 1{127 Al _fo s
Cy + Ky, X+ Copr+ Ky, || B 0

By expanding the determinant of coefficients the following fourth
order equation is obtained:

M+ (Cyy + C ¥ + (Kyy + Kgy + C11Cyy = CpaCopX?
+ (K, Cyy + KpyCiy = K15Cyy — Ky
+ (KplCyy = Kply) = 0 (46)

In general terms the characteristic equation can be expressed as

N
2 Ay M =0 (47
=0
For N=4
Ay + AN+ AN+ AN + AN =0
For A; > 0, the stability criteria may be expressed
A AAy > AAL + AAL (48)

A stability analysis has been performed by the approach just de-
scribed in reference [12]. That analysis considered stability about
the equilibrium eccentricity and attitude angle considering the
journal center to be initially at rest. The stability map resulting
from that study is shown in Fig. 14 and is comparable to that of
Badgley and Booker {13] who examined orbital plots for the jour-
nal center to determine whether or not the system was stable (see
Fig. 15).

The criterion for instability that they used was an increasing ra-
dius arm as the orbit tracked out the journal center path.

These approaches to the problem of stability have only consid-
ered the horizontal, unloaded journal. A loaded journal will be
shown to exhibit a greater area of stability on the stability map,
while an unloaded vertical journal will be unstable over the entire
range of the map. These are important facts that are not obvious
from a plot such as Fig. 14, or the similar plots of Badgley and
Booker, Fig. 15.

The analysis presented by Reddi [14] for the 180 deg long bear-
ing, with end leakage considered, has given a lower threshold speed
than the stability analysis using the short bearing equations. The
threshold curve resulting from their analysis has been converted
into the parameter used by Badgley and Booker for the special
case that the loading is due to the weight of the journal (rotor)
only. The Reddi-Trumpler threshold speed is less than that of
Badgley-Booker but the limit of eccentricity at which the journal
is completely stable is very nearly the same. This value is in agree-
ment with Hori who gave 0.8 as the upper limit of eccentricity past
which the journal is always stable.

In all of the various analyses of stability, only the threshold
speed of unstable motion is predicted. In an actual bearing oper-
ated above the stability threshold speed, the journal does not fail
but forms a finite limit cycle which increases with speed.

Summary
The equations necessary to calculate the transient response of a
rotor supported in fluid-film bearings have been presented. A fixed
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Fig. 13(a) Dimensionless direct stiffness and damping coefficients for the
short journal bearing
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Fig. 14 Stability for the unloaded short journal bearing
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journal bearing
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Cartesian reference frame allows the bearing response to be calcu-
lated directly using the fixed reference coordinate parameters of
the rotor shaft.

The results of a stability analysis using the fluid-film bearing
characteristics obtained from the theory presented agrees with
other published results in the literature. The results of an exten-
sive study of journal bearing response to imbalance both below and
above the stability threshold speed will be presented in Part 2. Ex-
amples of response to external nonsynchronous forcing functions
will also be presented in Part 2.
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