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Short Bearing Analysis Applied to 
Rotor Dynamics 
Part I: Theory 
A derivation of the Reynolds equation is presented in fixed Cartesian coordinates which 
allows rapid solution of the fluid-film bearing forces using the short bearing approxima­
tion. The solution for the fluid-film pressure profile is given in terms of the instanta­
neous position and velocities expressed in the fixed reference frame. The effects of cavi­
tation are approximated by deleting subambient pressures when integrating the pres­
sure profile. The equations for the instantaneous whirl rate and curvature are presented 
and discussed in relation to journal bearing behavior. Three-dimensional plots of the 
pressure profile for selected dynamic conditions give a vivid picture of the fluid pressure 
field. Dimensionless plots of the stiffness and damping coefficients for the short bearing 
are presented. The results of a linearized stability analysis are presented and compared 
to other published results. Results of transient response analysis will be presented in 
Part 2. 

Introduction and Statement of the Problem 

As the speeds of the machinery using journal bearings increased 
after the turn of the century, the interest in the development of 
journal bearing theory increased considerably. The users of such 
machinery were reporting large vibrational amplitudes under cer­
tain conditions of loading and speed which in turn caused large 
forces to be transmitted to the system foundation and the system's 
component parts. 

Newkirk [l]1 reported in 1924 the first recorded instance of 
bearing instability. He demonstrated that under certain combina­
tions of speed and loading, the journal center did not remain fixed 
as predicted by the steady-state Reynolds equation, but precessed 
or orbited about the equilibrium position at a speed approximately 
equal to half the rotational speed. This phenomenon was termed 
oil whip or whirl and is a self-excited motion. (See also references 
[2-10].) 

A complete dynamical analysis of such a system requires that 
the hydrodynamic force terms be coupled to the dynamical equa­
tions of motion of the rotor (journal), including the external load­
ing forces on the system and the unbalance of the journal. Figs. 1 
and 2 show the typical journal bearing schematic, force balance, 
and unbalance representation which will be used in the following 
analysis. 

1 Numbers in brackets designate References at end of paper. 
Contributed by the Lubrication Division of THE AMERICAN SOCIETY 

OF MECHANICAL ENGINEERS and presented at the ASLE-ASME Joint 
Lubrication Conference, Miami Beach, Fla., October 21-23, 1975. Manu­
script received at ASME Headquarters, July 16,1975. Paper No. 75-Lub-30. 

The resulting equations of motion for the complete system are 
highly nonlinear and the stability characteristics have been exam­
ined primarily from a linearized or perturbation analysis about the 

•equilibrium position of a balanced journal under unidirectional 
loading. 

The bearing stability obtained from linearized theory only pre­
dicts the threshold of stability. It does not give any information as 
to the magnitude of the journal orbit when operation is above the 
whirl threshold speed. The linearized theory predicts that the jour­
nal motion will grow exponentially or become unbounded when the 
rotor is operated above the whirl threshold speed. In actuality, the 
journal motion is bounded and the motion forms limit cycles. 

With the aid of the high-speed digital computer and the proper 
formulation of the hydrodynamic force expressions, the complete 
nonlinear motion of the journal bearing system may be obtained 
through the use of numerical methods for integrating the govern­
ing equations of motion. 

In addition to the determination of the journal motion under ar­
bitrary loading above and below the stability threshold, it is equal­
ly important that the bearing forces and the bearing dynamic 
transmissibility characteristics be determined. The results of such 
an analysis follows. 

Analysis of the System 
This section contains the derivation of the equations of motion 

for the journal bearing. Fig. 1 gives a schematic of a typical journal 
bearing. The clearance between the journal and bearing has been 
greatly exaggerated to clarify the representation of the bearing pa­
rameters. The journal center, oy, is free to move about in the imagi­
nary clearance circle depicted by the dashed circle in Fig. 1. The 
radial displacement of the journal center, OJ, from the bearing cen­
ter, Ob, is denoted as the eccentricity, e, of the journal, and when 
divided by the clearance, c, the eccentricity ratio, t, may then take 
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on values only from zero to unity. Unity represents bearing failure, 
while a value of zero has the journal perfectly centered in the bear­
ing. See Fig. 2 for a typical force balance. It is therefore possible to 
represent the journal motion by a point moving about in a unit 
clearance circle, where all displacements are made dimensionless 
by dividing them by the clearance. This representation will be 
used extensively throughout the following analysis. 

The Navier-Stokes equations can be expressed in vector nota­
tion as 

Dii 
= - V P + B+ M [ |v(v-«) + V'll\ (1) 

For the purpose of this particular derivation, the incompressible 
fluid film between two flat plates of length / and width b, sepa­
rated by some small distance h = f(x, z), will be examined (see Fig. 
3). If in addition the body forces are neglected, equation (1) may 
be expressed as follows:2 

Du 
•• - VP + liVHi (2) 

Furthermore, if the ratio of h/1 is restricted to be much less than 
unity, i.e., h/\ « 1, it may be concluded that the reduced Reynolds 
number, Re, is much much less than unity and it is hence possible 
to neglect the inertia force terms on the left of equation (2). 

Imposing the conditions of 

p = cons tan t 

Axial velocity of the bearing surfaces = 0.0 

dh/dz = 0, 

the following form of Reynolds' equation may be obtained from 
equation (2): 

a rf 9P-, + JLr^!^i 

= 12(t>2 - vt) + 6(«, - «2) ~ + ^ — («1 + «J) W 

2 This equation can also be applied in journal bearing analysis for the case 
of a compressible fluid due to the order of magnitude of the term D(D.u). 

P7Z7?Z77Z>/, 

BEARING 
SURFACE 

(JOURNAL) 

Fig. 1 Short journal bearing configuration 

It is now desired to relate this solution to the geometry of the 
journal bearing. The first approach considers rotating coordinates, 
in which the film thickness may be expressed as (see Fig. 4) 

h{9') = C( l + e cose) (4) 

Linear combinations of the following components of motion will 
be considered. 

(a) Rotation of journal about OJ, a t« , . 
(b) Rotation of bearing about oj, at tab. 
(c) Radial motion of oy along the line of centers. 
(d) Precession of Oj about ot, with angular velocity, wp = (/>. 
If the film thickness is "unwrapped" the velocities due to (a) 

and (b) above may be expressed by the following components: 
Ui=(R+ C)OJ6 « Rub 

Ui — Rio, cos a ~ Rij), 

Vi=0 
dh 

V, = Ru), s in a.Ri aiRu, = co,—-J ' ' cr0' 
Since 

tan (a) 

and for a « 1, 

dh _ 1 dh 
dx ~ R dQ' 

• N o m e n c l a t u r e -

B = body forces per unit volume 
b = width of slider bearing 
Cij = damping coefficients 
C, c = journal clearance 
D = journal diameter 
Eo, ES = eccentricity ratio calculated using 

the total resultant journal load for P in 
the Sommerfeld equation 

E,,, EMU = unbalance eccentricity ratio = 
ejc 

EN = ratio of rotating load angular speed 

= aiFo/uj 

e = radical journal center displacement, L 
e„ = unbalance eccentricity, L 
£,;„ ijv = unit vectors referenced from the 

bearing center 
$N, tyt = unit vectors referenced from the 

instantaneous center of curvature 
Fa = magnitude of rotating load, F 
Fx, Fy = force due to film in x and y coor­

dinate directions respectively, F 
Fx, Fy = dimensionless forces from fluid 

film in x and y directions 
g = acceleration of gravity, L/T2 

H = dimensionless film thickness = h/c 
h = film thickness, L 
h = stepping increment of independent 

variable 
i, j , k = unit vectors in the fixed x-y-z coor­

dinate directions 
Kjj = stiffness coefficients, F/L 
L = length of journal, L 
I = length of slider, L 
Mj, nij = effective mass of journal, F-T2/L 
ot = bearing center 
Oj ~ journal center 
P, p = pressure, F/L2 

P = projected load = W/(L X D), F/L2 

P = dimensionless pressure = (p/((Nb + 
Nj) X n)) X (c/L)'2 

R, r = journal radius, L 
Re = Reynolds number = UL/v 
Re* = modified Reynolds number = Re X 

(h/1)2 

S = Sommerfeld number = nN/P(R/c)2, 
rev. 

SS, Ss = short bearing Sommerfeld num­
ber (capacity number, Ocvirk number) = 

S X (L/D)'\ rev. 
t = time, T 
U\ = velocity, L/T 
u = vector representation of velocity, L/T 
u = velocity component in x -coordinate di­

rection, L/T 
Vi = velocity, L/T 
Vp = velocity of a point on the journal sur­

face, L/T 
VQ = velocity of a point on the bearing sur­

face, L/T 
v - velocity component in the y-coordinate 

direction, L/T 
W = effective weight of the journal, F 
W; = velocity, L/T 
w = velocity component in 2-coordinate di­

rection, L/T 
X = dimensionless displacement = x/c 
X - dimensionless velocity = x/cwj 
x, X\ = displacement of journal in x -coordi­

nate direction, L 
X'2 — displacement of bearing in x-coordi­

nate direction, L 
Xj = solution at tth step of independent 
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_ 1 dh 
a ~ Rcie< 

By neglecting the stretch effect in equation (3), the contributions 
due to rotation cot and coy are given by 

(5) 

L g V - ^ V P ) ] ^ 

For the radial motion along the line of centers it can be shown 
that 

Un = e s in 8' 

V, = 0 

T h e r e f o r e 

L ^ V . ( - V P ) ] c = ( - e s i n 0 ' ) - ^ | ^ + 2ecos£>' 

but by differentiating equation (4), it follows that 

A .li- ex r i y . (— VP)L = e[sin2 0 ' ^ + 2 cos 9'] 
6 (J. ^ 

~i9t 

(6) 

For precession, it is known that every point in the journal has 
velocity e<ji and is directed normal to the line of centers. Therefore 
the following velocity components are due to precession: 

U, — -ed> cos 6' 

eo s in i 
V< = V, 0 

Substituting these expressions into equation (3) yields 

e/l° l f v . ( ^ V P ) W f 0 
P, u x ti cos 

•dh 

9/j_ 
36' 

+ 2e<t> s in I 

Combining equations (5), (6), and (7) results in 

1 
6 
£v.(£^] = K + o>, -2*) |£ + 2g 

(7) 

(8fl) 

l r l 9 ,/23 9 P , , 9 ,^3 3 P - , __ , OrfA— + ? — 

(86) 

This expression, i.e., equation (8), is the Reynolds equation for a 
plain journal bearing using rotating coordinates, where 6 is the 
angle measured from the line of centers in the positive coordinate 
direction. This form of Reynolds' equation is the expression that 

*-x 

F. 

Me^w2 

Fig. 2 Unbalance representation (above) and a typical force balance 

Fig. 3 The plane slider bearing 

^Nomenclature* 

variable 
Y = dimensionless displacement = y/c 
Y = dimensionless velocity = y/ccoy 
y, yi = displacement of journal in y-coordi-

nate direction, L 
y<i = displacement of bearing in the y-coor-

dinate direction, L 
Z = dimensionless distance along axial or 

2-direction = z/L 
z = distance along z -coordinate, L 
a = ratio of angular velocities = u>jl(u>b + 

coy) 
a = angle between velocities it! coy and (R + 

Cjcot, ~(l/R)(oh/aO) 

/3 = phase angle between the journal dis­
placement vector and the unbalance ec­
centricity vector, deg 

c, = eccentricity ratio = e/c 
to = eccentricity calculated from equation 

of Ss 
i\ = ratio of rotating load velocities = 

coFo/coy 
I)' = angular distance from positive line of 

centers in rotating coordinate set 
6 = angular distance from the positive x-

axis in the fixed x-y coordinate set 
0 = instantaneous angular velocity about 

the center of curvature, T _ 1 

A = root to the characteristic equation of 
journal equations of motion, T - 1 

M = viscosity, F-T/L2 

v = kinematic viscosity, = ci/p, L2/T 
p = density, F/gL3 

p = instantaneous radius of curvature, L 
(j> = whirl velocity about bearing center, 

0 = attitude angle, deg 
Q, coy = journal angular velocity, T - 1 

Us - speed parameters, = coy/v Wr/nijC 
co), = bearing angular velocity, T" 1 

us = speed parameter, = wj/vg/c, T~ ] 

co = angular speed defined as «6 + coy, T - 1 

Journal of Lubrication Technology JANUARY 1976 / 49 

Downloaded From: http://tribology.asmedigitalcollection.asme.org/ on 07/05/2013 Terms of Use: http://asme.org/terms
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Fig. 4(a). Journal bearing in rotating coordinates 

(b) 

Fig. 4(b). Journal bearing profile unwrapped 

most of the work in this field is based on. To avoid coordinate 
transformations, the following derivation in fixed Cartesian coor­
dinates is presented. 

The following unit vectors will be used to express the derived ve­
locity components (see Fig. 5): 

i=-cos 81)R-sin 81)e 

j =-sin· 8 nR + cos 8 '1)e 

nR = -cos 8i - sin 8j 

ne = -sin 8i + cos 8j (9) 

The velocities of the bearing and journal centers are as follows: 

VOb = x Ii + .\;d 

Vo; = xzi + }izj 

The velocity of point "Q" is: 

. . 
== xli + yd + RW b 1)e 

and also 

or 

and 

(10) 

III = VQ 'ne = wJl - :(1 sin 8 + )\ cos 8 (11) 

For point "P," it is necessary to relate the velocities to V2 and 
U2. 

The RWj component is not in line with the RWb component; they 
differ by the angle <Y. For small displacements these are related 
small angles and it is thus possible to approximate <Y as follows: 

Also 

/:"/Z 
tan Q! ~ Q! = -

tl.x 

alz 1 all 
ax == R ae 

tan Q! ~ sin. Q! ~ Q! 

For the theta direction 

Fele = Rw; cos Q! ~ R(u; 

SO/JANUARY 1976 

and for the radial direction 
alz 

Vel, = Rw; sin Q! ~ w; a8 

So, it is now possible to express the velocity of point "P" as 

alz 
V p = x2 i + .v2i + Rw; ne + w; a8 nR 

Therefore 

llz = V p • 1} e = -:\:2 sin 8 + .1'z cos 8 + Rw; 

and 

(12) 

a/z 
F2 = V p ' nR = -x2 cos 8 - ~'2 sin 8 + w; S8 (13) 

By neglecting the stretch effect of equation (3), i.e., h X (4 
ax)(U1 + Uz), substitution of the appropriate velocities into that 
equation gives 

1 - h3 _ 
-[Y'. (-Y'P)] 
6 /1 

1 alz 
= Ii(UI - liZ) a8 + 2(1'2 - VI) 

) all ( . . )( 1 Biz. ) 
= (wb + w; '08 + Xz - Xl -2 cos 8 + Ii 88 sm 8 

( . .)(. 1 alz 8) 
- .\'z - . .\'1 2 sm 8 + Ii a 8 cos 

. 1 ah 
In addition, by neglectmg the Ii a 8 terms, 

1[- (1z
3 
-"] ( ) aft ( . .)( ) '6 Y'. MY' PI = Wb + W; Be + Xz - Xl -2 cos 8 

- (~'2 - )'1)(2 sin 8) (14) 

But for small deflection, the film thickness, h, is given as (see Fig. 
5) 

Since from equation (4) we can write 

h(8) == c - e cos (8 - (90 - ¢)) 

= c - e cos 8 sin ¢ -e sin 8 cos ¢ 
where 

e sin ¢ = x2 - Xl' e coS ¢ = -"z - )11 

It is now possible to rewrite equation (14) as follows: 

.![1-~ (h3 
ap) + ~(h3 SP)] = (w + w.) ah + 2 all 

6 R2 '08 /1 a 8 a z /1 a z b J a 8 at 

= (Wb + w;)[(x2 - Xl) sin 8 - (Y2 - Yl) cos 8] 

- (x2 - xl)(2 cos 8) - ()'z -h)(2 sin 8) (16) 

It must be remembered that in this equation the "8" is measured 
from the fixed x -axis and should not be confused with the rotating 
coordinate set where the 0' is measured from the line of centers. 

Two basic approaches to the solution of equation (16) have been 
reported in the literature. If it is assumed that the journal bearing 
is very long, then it is possible to neglect the fluid flow and pres­
sure gradients along the z-axis and hence reduce equation (16) to 

(17) 

This solution is known as the long bearing solution and was first 
solved by Sommerfeld, who used an adroite substitution and suc­
ceeded in integrating equation (11). 

On the other hand, if it is assumed that the bearing is relatively 
short, the appropriate approach is to neglect the flow in the theta 
direction due to pressure gradients and arrive at 

.!~(h3 ap)=(w +w.)alz+ 2 ah 
6 az /1 az b J a8 at ( 18) 

which is known as the governing equation for the short bearing so-
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Fig. 5 Journal bearing in fixed Cartesian coordinates 

lution. This approach to Reynolds' equation is the basis for the 
computer program and resulting analysis to be presented in the 
following sections. 

To have a better understanding of when the given assumption is 
a valid one, the solid curves in Fig. 6 were drawn from data for a fi­
nite full journal bearing (reference [11], pp. 86-88). Those data 
were reported to have come from digital computer solutions of the 
general Reynolds equation. In addition, the corresponding Som-
merfeld number obtained from the short bearing solution is plot­
ted for the same length to diameter ratios. It is easy to see that the 
assumption is very good for L/D ratios of lk or less, or for L/R ^ 1. 
It is also apparent that more deviation exists at larger eccentricity 
values for L/R > 1, whereas for smaller values the agreement is 
very good indeed. 

The reason for the deviation in the short bearing solution has 
been explained by Ocvirk [4] to arise from the higher pressures 
predicted due to neglecting the theta pressure flow in the journal. 
However, by realizing the limitations of the solution there should 
be no confusion about the results and conclusions obtained from 
the given theory. 

D y n a m i c a l E q u a t i o n s of M o t i o n 
The Reynolds equation has been derived in the previous section 

for the plane slider and by proper substitution and assumptions, it 
has been reduced to the following equation which is valid for a 
"short" journal bearing: 

&z 9z ' 
+ O) •) h 

dh 
(19) 16JU. 9 z ' y ° '' 39 'at 

In fixed coordinates, the film thickness, h, is given by 

h = c - x cos 9 - y s in 9 (20) 

This equation is valid for a journal bearing that has no axial mis­
alignment and was derived by considering small motions in the x 
and y directions to be linearly related. In addition, by limiting the 
motion of the bearing to rotation, wj>, all displacements will be rel­
ative to the bearing center, ot. 

Equation (19) can be integrated directly and by applying the 
boundary conditions 

P(9,0) = P(9,L) = 0 (21) 

to evaluate the two constants of integration; the following equation 
results: 

„ , . . 3nz(z-L)r. . J / i . . dh-. 

F r o m ',20) 

and 

dh 
36 

'dh 
3/ 

= x sin y - v cos < 

-x cos 9 - v sin i 

(22) 

(23) 

(24) 

""* »—i—j—i u i i I — r 

-0.000 0.200 0.%00 0.600 0.800 1.000 
ECCENTRICITY 

Fig. 6 Comparison of finite length and short bearing solutions 

The increment of force on the journal is given as 

AF = P(9,z)Rd6dz T)R 

w h e r e 

T h e r e f o r e 

rjR = - c o s 0i - s in 9] 

AF,. = (AF- i) i = -[P(9, z)Rd9dz cos 0]i 

and 

(25) 

(26) A F , = (AF» j)j = -[P{9, z)Rd9dz s in 0]j 

where the total force component is 

Fx = - / / P ( 6 , z)R cos 6d9dz 

and 

Fy = -ffP(9, z)R s in 9d9dz 

The result of integrating over the length of the bearing and substi­
tuting equations (23) and (24) leads to the following equations: 

r i ? n = j iRL3 

V / 2 ' 

X 
2'(u}j + ub)(x s in 0 - y cos 9) - 2(x cos 6 + y s in ( 

(c — x cos 9 — v s in i 

xf°S
f lV (27) L sm 9 ' 
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The integral of equation (27) must be integrated very carefully 
since a subambient pressure will not be permitted to exist in the 
fluid film. This follows from reports on experimental test rigs as 
discussed by reference [11], p. 435. 

It is possible to put equation (27) into dimensionless form if the 
following representation is used: 

x v 
c c 

then (27) becomes 

X x 
ceo..' 

Y = • 

fFx\ _ IJ-L3Ru> r 2" (X- 2Ya) s i n {Y + 2Xa) cost 

( T = X c o s " e - Y s in 6)s 

x{ a}d8 (28) L s in 8 ' 

The equations of motion of the journal can be derived by consid­
ering Newton's second law: 

( 2 2 % , = mpiw (29) 

A position vector to the center of mass of the journal is 

pm = (x + eu cos (j}jt)i + {y + e^ s in w,./)j (30) 

where the mass center is located a radial distance of e„ from the 
geometric center of the journal. Then the acceleration is given by 

am = {x- e^2 cos w,/)! + (y - e„co/ s i n u y ) j (31) 

t h e r e f o r e 

vijCx- e.Mco/ cos co/) = (ZF)x (32a) 

ivjiv- euu? s in to/) = (SF)v (326) 

where the right-hand side of the given equations represents all 
loading on the journal, including the forces given by equation (27) 
that are developed in the fluid film. By letting 

Co,- = Q, OIL — T, — = Eu 1 ' c 
and dividing through by m/cQ2, the equations become 

= E„ cos r + 
dT2 

d2Y 
If2 

nifCQ, 
H cos (VT)+J^^FX(X,Y,X,Y) 

2mic
JQl 

FX 

E„ s i n T + 
nijCQ,2 s in (?]T) + 

liRL3u> 

(33) 

. FY 

-2F,(X,Y,X,Y) 

. . (34) 
nijCQ,2 

where: 
FQ = rotating load at some multiple of the journal frequency. 
FX= FY = constant loading in x and y direction, respectively. 
Also, other loading can be added as noted by + . . . 
The given equations are for a vertical journal bearing since we 

have not included the gravity loading in the equations of motion. 

J o u r n a l P r e c e s s i o n R a t e and R a d i u s of C u r v a t u r e 
When a journal bearing is acted upon by some unbalance force 

or other cyclic forcing function the journal tends to move in an 
orbit due to the forces acting upon it. If the orbit encloses the cen­
ter of the journal then it possible to think of the distance from the 
bearing center to the journal center as the radius of the path and 
the angular velocity with respect to the bearing center as the whirl 
frequency. Referring to Pig. 7, these quantities would be radius e 
and angular velocity </>. 

These values may be expressed in terms of the displacements 
and velocities, x, y, x, y by the following procedure. The velocity of 
the journal center may be expressed as 

V , - xi + y) 

The relation among the unit vectors is as follows: 

So 

T h e r e f o r e 

kr — cos (pi + s in 4>] 

(j>0 = - s i n 4>i+ cos </>j 

x = e cos <p, y = e s in </> 

= xi' ^„ + vj • §$ = - s i n <px + cos 4>y 

e (cos <j>y - sincfti) _ xy - yx 
e e e2 

or since e2 = x2 + y2 then, 

xy — yx 
l r ~ + y2 

In dimensionless form 

w h e r e 

and 

$ XY - YX 

A' = x/c, Y = y/c 

(35) 

X = x/c, Y = y/c, with Q = Wj as b e f o r e . 

The radius, e, is given by 

e = c x -J X2 +~Y^ (36) 

However, it is obvious that (36) has little meaning if the journal 
orbit does not enclose the bearing center, ot>-

The equations for the instantaneous radius of curvature p and 
angular velocity 0 will now be developed. 

The velocity can be expressed for this purpose as 

V, = v$t = pfy 
where 

p = instantaneous radius of curvature 
0 = instantaneous angular velocity about Ob 

The acceleration is expressed as 

dt 

But s ince 

and 

V2 

t t t + "p- <)>* • 

3.^ = xi + y] 

a,-
P 

A'l-Chr =3']-<fjv *-i fit 

The new unit vectors are determined as follows: 

(37) 

Fig. 7 Typical journal trajectory illustrating the instantaneous radius of 
curvature 
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V = Vet = xi + vj 

t h e r e f o r e 

and 

Hence 

and 

i < - • -ft ~ TA*1 + W) 

% = k ^ t =~y{x] - j)i) 

i - < | „ = - y / y 

j • | „ = x/V 

So, from equation (38), 

V*/p = yx — xy 
V 

Solving for p and 0 = V/p results in 

P = Vs/{yx - xy) 

and 

; yx — Hi' 

(38) 

(39) 

In dimensionless form, the instantaneous whirl ratio is given by 

YX - XY 

n 
(40) 

X2 + Y2 

This expression is meaningful for any orbit path the journal 
might traverse and will be easily calculated since it involves quan­
tities readily available in the method of solution of the journal 
orbit. 

T h e F lu id F i l m P r e s s u r e Prof i l e 

The pressure in the fluid film was given in fixed coordinates by 
equation (22). Substituting equations (23), (24) into equation (22) 
and expressing the result in dimensionless form gives 

P P{0, z) A 2 
MOV + N/) V 

6TTZ{1- Z) 

t-X s ing + Y cos0 + 2a{X cos6 + Y s in8 
X L ( 1 - X c o s e- 7 s infl)3 (41) 

w h e r e 

*-v ^ + ", 
X x 

c' 

J_dx 
cw, dl 

If no values of negative pressure are allowed to exist in the fluid 
film, then all P's less than zero are equated to zero. The given 
equation was programmed on the digital and the results plotted 
via an automatic plotter. Various cases were considered and are 
presented as Figs. 8-12. 

The values of the dimensionless displacements and velocities are 
given at the top of the figures. An end view of the section at the 
bearing midspan is given in the upper left corner with the pressure 
profile represented as radial lines. The center figure is a three-
dimensional plot of the "unwrapped" pressure profile. At the bot­
tom of the figure is the film thickness, H, plotted versus angular 
distance, 0. 

The maximum dimensionless pressure increases as the journal 
moves from near the center (Fig. 8) out to X = 0.2, Y = —0.10 (Fig. 
9). Fig. 10 shows the uncavitated pressure surface for the case of 
Fig. 9. The negative pressures cannot be sustained in the fluid film 
and therefore cavitates. In Fig. 11 the case of X = 0.5, Y = —0.V is 
given in small velocity which results in a slight increase of peak 
pressure above that for the static value (Pmax = 210.38). 

Fig. 8 Pressure profile, pressure surface, and film thickness for X = 0.05, 
Y= - 0 . 0 2 , X= Y= 0 

Fig. 9 Pressure profile, pressure surface, and film thickness for X = 0.2, 
Y= - 0 . 1 0 , X= Y= 0 

X- 0.20 

x = o.ooo 

Fig. 10 Uncavitated pressure profile for X = 0.2, Y = —0.10, X - Y = 0 
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Fig. 11 Pressure profile, pressure surface, and film thickness for X = 0.5, 
Y = -0 .7 , X = Y = -0.05 

Fig. 12 Pressure profile, pressure surface, and film thickness for X = Y • 
0.0, X = - Y = 0.5 

Fig. 12 has been given the condition of synchronous whirl3 at an 
eccentricity of 0.5. All cases plotted were for a = 1, i.e., wj, = 0. 

If it is assumed that gravity is acting in the negative y-coordi-
nate direction, then the term (— g/cO.2) must be added to (34) to 
account for this effect. 

The solution of equations (33) and (34) will give the journal 
orbit as a function of dimensionless time, T. Numerical methods 
will be used to integrate these equations of motion forward in time. 

Stab i l i ty Analys i s for S m a l l D i s p l a c e m e n t s 
The equation for the fluid-film force components has been de­

rived for the short bearing model and is given by equation (28). It 
is now possible to obtain from this equation the stiffness and 
damping coefficients which are given as 

K 8 F i - • Ki i = ~ 7— i " 8.V. 1,2; . / = 1,2 

C„ 
SFi 

9 . V . 
; i = 1,2;.; = 1,2 

(42) 

(43) 

These coefficients can now be inserted into the equation of motion 

3 The journal center is processing in the bearing at the journal rotational 
angular velocity. 

of the journal and a stability analysis performed. Plots of the re­
sulting dimensionless values used in the analysis are presented in 
Figs. 13(a) and 13(b). The equation to be examined is given as fol­
lows: 

whe re 
X, + CUX} + K,^ 0 

M, 
W 

(44) 

The assumed solution is of the form 

Xj = Aeu, X2 = Bi-* 

Making these substitutions results in the following equations: 

X2 + Cn\ + Kn CnX + Kn 

C21X + Kn X2 + C22X + K2, 
(45) 

By expanding the determinant of coefficients the following fourth 
order equation is obtained: 

X4 + ( C „ + C22)X
3 + (Ku + K22 + CnC22 - C12C21)X2 

+ (-ftTitC22 + K22Cn - KnCn - KnCl2)\ 

+ (K22KU - K12Kn) = 0 (46) 

In general terms the characteristic equation can be expressed as 

S A„ tX' = 0 

F o r N = 4 

At + A3X + A2X
2 + AjX3 + A0X

4 = 0 

For Aj > 0, the stability criteria may be expressed 

(47) 

AtA2A3 > AAAX
2 + A ^ ' (48) 

A stability analysis has been performed by the approach just de­
scribed in reference [12]. That analysis considered stability about 
the equilibrium eccentricity and attitude angle considering the 
journal center to be initially at rest. The stability map resulting 
from that study is shown in Fig. 14 and is comparable to that of 
Badgley and Booker [13] who examined orbital plots for the jour­
nal center to determine whether or not the system was stable (see 
Fig. 15). 

The criterion for instability that they used was an increasing ra­
dius arm as the orbit tracked out the journal center path. 

These approaches to the problem of stability have only consid­
ered the horizontal, unloaded journal. A loaded journal will be 
shown to exhibit a greater area of stability on the stability map, 
while an unloaded vertical journal will be unstable over the entire 
range of the map. These are important facts that are not obvious 
from a plot such as Fig. 14, or the similar plots of Badgley and 
Booker, Fig. 15. 

The analysis presented by Reddi [14] for the 180 deg long bear­
ing, with end leakage considered, has given a lower threshold speed 
than the stability analysis using the short bearing equations. The 
threshold curve resulting from their analysis has been converted 
into the parameter used by Badgley and Booker for the special 
case that the loading is due to the weight of the journal (rotor) 
only. The Reddi-Trumpler threshold speed is less than that of 
Badgley-Booker but the limit of eccentricity at which the journal 
is completely stable is very nearly the same. This value is in agree­
ment with Hori who gave 0.8 as the upper limit of eccentricity past 
which the journal is always stable. 

In all of the various analyses of stability, only the threshold 
speed of unstable motion is predicted. In an actual bearing oper­
ated above the stability threshold speed, the journal does not fail 
but forms a finite limit cycle which increases with speed. 

S u m m a r y 
The equations necessary to calculate the transient response of a 

rotor supported in fluid-film bearings have been presented. A fixed 
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Car tes ian reference frame allows t h e bear ing response to be calcu­

la ted direct ly using t h e fixed reference coord ina te p a r a m e t e r s of 

t h e rotor shaft . 

T h e resul ts of a s tab i l i ty analysis using the fluid-film bear ing 

charac ter i s t ics ob ta ined from t h e theory p r e s e n t e d agrees wi th 

o the r pub l i shed resul t s in t h e l i t e ra ture . T h e resu l t s of an exten­

sive s tudy of journa l bear ing response to imba lance b o t h below and 

above t h e s tabi l i ty th resho ld speed will be p r e s e n t e d in P a r t 2. Ex­

amples of response to ex terna l nonsynch ronous forcing funct ions 

will also be p r e s e n t e d in P a r t 2. 

" Gen. Elec. Rev., Vol. 27, 1924, p. 

R e f e r e n c e s 

1 Newkirk, B. L., "Shaft Whipping 
169. 

2 Newkirk, B. L„ and Taylor, H. D., "Shaft Whipping Due to Oil Ac­
tion in Journal Bearings," Gen. Elec. Rev., Vol. 28, 1925, pp. 985-988. 

3 Robertson, D., "Whirling of a Journal in a Sleeve Bearing," Phil. 
Man., Series 7, Vol. 15, 1933. 

4 Ocvirk, F. W., "Short Bearing Approximation for Full Journal Bear­
ings," NACA TN 2808,1952. 

5 Hagg, A. C , "The Influence of Oil Film Journal Bearings on the Sta­

bility of Rotating Machines," Journal of Applied Mechanics, Vol. 68, 1946, 
p. 211. 

6 Poritsky, H„ "Contribution to the Theory of Oil Whip," TRANS. 
ASME, Aug. 1953, pp. 1153-1161. 

7 Hagg, A. C , and Warner, P. C , "Oil Whip of Flexible Rotors," 
TRANS. ASME, Oct. 1953, pp. 1339-1344. 

8 Newkirk, B. L. and Lewis, J. F., "Oil-Film Whirl—An Investigation 
of Disturbances Due to Oil Films in Journal Bearings," TRANS. ASME, Jan 
1956, pp. 21-27. 

9 Hull, E. H., "Oil Whip Resonance," TRANS. ASME, Vol. 80, 1958, 
pp. 1490-1496. 

10 Hori, Y., "A Theory of Oil Whip," Journal of Applied Mechanics, 
TRANS. ASME, June 1959. 

11 Pinkus, O., and Sternlicht, B., Theory of Hydrodynamic Lubrication, 
McGraw-Hill, New York, 1961. 

12 Choudhury, P. De, and Gunter, E. J., "Dynamic Stability of Flexible 
Rotor-Bearing Systems," Report No. ME-4040-104-70U, University of Vir­
ginia, Charlottesville, Va, Dec. 1970. 

13 Badgley, R. H., and Booker, J. F., "Turborotor Instability—Effect of 
Initial Transients on Plane Motion," Paper No. 68-Lub-7, Presented at 
ASME-ASLE Lubrication Conference, Oct. 8-10, 1968. 

14 Reddi, M. M., and Trumpler, P. R., "Stability of High-Speed Journal 
Bearings Under Steady Load—Part 1: The Incompressible Film," Journal 
of Engineering for Industry, TRANS. ASME, Vol. 84, 1962. 

ERRATA 

Y. P. Chiu, "On the A x i a l S y m m e t r i c C o n t a c t P r o b l e m I n v o l v i n g E l a s t i c H o l l o w S p h e r e s , " p u b l i s h e d in the J u l y 1975, i s s u e of 
t h e J O U R N A L O F L U B R I C A T I O N T E C H N O L O G Y , T R A N S . A S M E , S e r i e s F, Vol . 97, N o . 3, pp. 526-532 . 
On p. 529 t h e l e f t - h a n d s ide of e q u a t i o n (21) s h o u l d be (UR)R=RJR0 = i n s t e a d of ( U R ) / R 0 RO = -Rn =. 
E q u a t i o n (24) s h o u l d be p r i n t e d as f o l l o w s 

Tr(k+ 1)! 

2k 

k + l)l /**72 
• j • (1 - p 2 s i n 2 X)< t + 1>/2dX, p = r/a 

k+ 11 \ 2 Jo 
(24) 

On p. 528 t h e e q u a t i o n n u m b e r (20) s h o u l d m o v e to t h e end of t h e f irs t l ine on p. 529. T h e c o r r e c t form of T a b l e 2 is a s fo l l ows : 

Table 2 

Wfc ( " / c ) p = o 

1 (7T 2 /2)(1 - P2I2) TT2/2 
2 ( 8 / 9 ) - {2(2 -p2)E(p)- ( 1 - p 2 ) - 47T/3 

K{p)\ 
3 ( 3 T T 2 / 8 ) - ( 1 - p 2 + 3 p 4 / 8 ) 3 T T 2 / 8 

4 ( 3 2 / 2 2 5 ) {[8(2 - p2)2 - 9 ( 1 - 167T/15 
p2)]-E(p)- 4 ( 2 -p2)-K{p)\ 

5 ( 5 / 1 6 ) f f 2 - ( l - 3 p 2 / 2 + 9 p 4 / 8 - 5 p 6 / 1 6 ) 5 T T 2 / 1 6 
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