Consider the angle ψ between the radius vector and the tangent line to a curve, $r=f(\theta)$, given in polar coordinates, as shown in Fig. 1. Show that $\psi=\tan ^{-1}(r /(d r / d \theta))$.

Figure 1: The tangent line to the curve $r=f(\theta)$ makes an angle of ψ with respect to the radial line at the point of tangency, and an angle ϕ with respect to the x-axis.

Proof:

- Consider $\phi=\theta+\psi$. Then $r=f(\theta)$ is given in polar coordinates by

$$
\begin{equation*}
x=r \cos \theta, \quad y=r \sin \theta, \tag{1}
\end{equation*}
$$

with associated derivatives given by.

$$
\begin{equation*}
\frac{d x}{d \theta}=-r \sin \theta+\cos \theta \frac{d r}{d \theta} . \quad \frac{d y}{d \theta}=r \cos \theta+\sin \theta \frac{d r}{d \theta} . \tag{2}
\end{equation*}
$$

- From the geometry of the problem in which it is evident that $2 \pi-\psi-\theta=2 \pi-\phi$, we have that $\psi=\phi-\theta$, and consequently, using a familiar multiple angle formula from trigonometry, that

$$
\begin{equation*}
\tan \psi=\tan (\phi-\theta)=\frac{\tan \phi-\tan \theta}{1+\tan \phi \tan \theta} . \tag{3}
\end{equation*}
$$

- Since the tangent line to the curve $f(\theta)$ makes an angle ϕ with respect to the x-axis we have that $\tan \phi=\frac{d y / d \theta}{d x / d \theta}$, and trivially from the geometry that $\tan \theta=y / x$. Substituting these into (3) gives,

$$
\begin{align*}
\tan \psi=\frac{\frac{d y / d \theta}{d x / d \theta}-\frac{y}{x}}{1+\left(\frac{y}{x}\right) \frac{d y / d \theta}{d x / d \theta}} & =\frac{x \frac{d y}{d \theta}-y \frac{d x}{d \theta}}{x \frac{d x}{d \theta}+y \frac{d y}{d \theta}} \tag{4}\\
& =\frac{x\left(r \cos \theta+\sin \theta \frac{d r}{d \theta}\right)-y\left(-r \sin \theta+\cos \theta \frac{d r}{d \theta}\right)}{x\left(-r \sin \theta+\cos \theta \frac{d r}{d \theta}\right)+y\left(r \cos \theta+\sin \theta \frac{d r}{d \theta}\right)} \tag{5}
\end{align*}
$$

Substituting (1) into (5) yields,

$$
\begin{align*}
\tan \psi & =\frac{r \cos \theta(r \cos \theta+\sin \theta(d r / d \theta))-r \sin \theta(-r \sin \theta+\cos \theta(d r / d \theta))}{r \cos \theta(-r \sin \theta+\cos \theta(d r / d \theta))+r \sin \theta(r \cos \theta+\sin \theta(d r / d \theta))} \tag{6}\\
& =\frac{r^{2}}{r d r / d \theta} \tag{7}\\
& =\frac{r}{d r / d \theta} \tag{8}
\end{align*}
$$

which is the desired result.

