Consider the angle y between the radius vector and the tangent line to a curve, r = f(0), given in
polar coordinates, as shown in Fig. 1. Show that y = tan~!(r/(dr/d@)).

Figure 1: The tangent line to the curve r = f(0) makes an angle of y with respect to the radial line at
the point of tangency, and an angle ¢ with respect to the x-axis.

Proof:
e Consider ¢ = 0 + y. Then r = f(0) is given in polar coordinates by
X =rcos@, y=rsin0, (D)

with associated derivatives given by.
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e From the geometry of the problem in which it is evident that 27 — v — 8 = 27 — ¢, we have that
¥ = ¢ — 0, and consequently, using a familiar multiple angle formula from trigonometry, that

tan ¢ — tan 6
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e Since the tangent line to the curve f(6) makes an angle ¢ with respect to the x—axis we have
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that tan ¢ = dz? 10" and trivially from the geometry that tan 6 = y/x. Substituting these into (3)
gives,
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Substituting (1) into (5) yields,

rcos 0 (rcos0 +sin@(dr/d6)) —rsinO (—rsin +cos 0(dr/d0))
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which is the desired result. O



