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Abstract

On the Dynamic Stability of Automotive Turbochargers:
Case Studies with various Bearing Configurations
(February 2018)

Xiao Fang, B.S., Hanyang University

Chair of Advisory Committee: Dr. Keun Ryu

The present study introduces a finite element structural rotor dynamic model to predict the
stability of automotive turbochargers (TCs) supported on simple rigid geometry fluid film bearings
(2-axial groove bearings or multi-lobe bearings or offset-half bearings). The turbocharger finite
element (FE) structural model for linear analyses include lumped masses for compressor wheel, and
turbine wheel. The free-free mode shapes and natural frequencies of a rotor are measured and
compared with predictions. Stability of the TC rotor-bearing system is largely related to bearing
dynamic coefficient (stiffness and damping coefficients). Rotordynamic predictions are conducted
with a commercial TC rotor model from 10 krpm to 200 krpm. By comparing the bearing force
coefficients of various configuration bearings, the results show the relationship between bearing
configurations and rotor-bearing system stability. The higher offset provides higher direct stiffness
and damping force coefficients of multi-lobe bearing when the bearings are preloaded. The higher
pad angle provides higher direct stiffness and damping force coefficients of the multi-lobe bearings.
The 3 lobe bearings provide higher direct dynamic coefficients than the 4 lobe bearings, offset-half
bearings, and 2-axial groove bearings. Furthermore, the eigenvalue analysis show significantly
different stability results among the 2-axial groove bearings, 3 lobe bearings, 4 lobe bearings, and

offset half bearings.
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Nomenclature

Bearing radial clearance [m]

Pad radial clearance [m]

Bearing radius at minimum clearance [m]
Journal shaft radius [m]

Static load on bearing [N]

Pad radius [m]

Bearing radius [m]

Journal radius [m]

Eccentricity [m]

Preload [-]

Offset [-]

Angle from the negative load vector (negative X-axis) to the line connecting the bearing center

and the pad center of curvature [degree]

o

O

Angle from the negative load vector (negative X-axis) to leading edge of the first lobe [degree]

Angle from the negative load vector (negative X-axis) to trailing edge of the first lobe [degree]

Logarithmic decrement [-]
Mass [kg]

Damping coefficient [KN-s/m]
Stiffness coefficient [MN/m]
Rotor angular velocity [/s]
Horizontal direction

Vertical direction

vi
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Chapter 1. Introduction

Turbochargers (TCs) are turbomachinery that enhances the efficiency and the power output of
internal combustion engines by forcing outside air into the combustion chamber. Researchers are
focused on improving turbocharger designs for better performance at a lower cost as well as to
improve reliability and increase operational life. The operating speed of turbocharger is very high,
hence stability of entire system made a very high demand. Bearings are one of the important parts

of TC rotor-bearing system.

The current study focuses on TC rotor systems supported on 2-axial groove bearings, offset-
half bearings, and multi-lobe bearings. This study analysis and compare the stability effect of
turbochargers using different bearing configurations. The most significant considerations for proper
bearing selection are cost, manufacturability, easy for installation, interchangeability, static
characteristics, and dynamic characteristics. The static characteristics and the dynamic
characteristics of bearings are essential in a rotor-dynamic analysis. The results of bearing dynamic

analysis and eigenvalue analysis are used to verify stability of rotor-bearing systems.

This study analyzes static characteristics, and dynamic characteristics of TCs supported on
different types of bearings. After calculating stiffness and damping force coefficients of TC
supported on each bearing, eigenvalue analysis can be used to compare the stability of each TC
system. Compare TCs using different bearing configurations can find the source of the stability

problem of TC.



Chapter 2. Literature review

Turbochargers are machines which enhance performances of internal combustion engines.
Principal components of turbocharger include compressor wheel, turbine wheel, shaft and bearing.
Turbochargers are high-performance rotation machines. Shaft speed of turbocharger can reach
100,000 rpm. Most of the researchers are focused on increasing efficiency of turbochargers,
especially power output enhanced in a miniaturization turbocharger. Under these circumstances,
turbochargers appear many problems like excessive levels of steady state synchronous rotor
response, and sub- harmonic rotor instabilities. Previous researchers developed many kinds of
bearings. These bearings show different stability effect on the turbocharger. To quantify rotor-
bearing system stability, researchers introduced the concept of logarithmic decrements [5]. This
concept needs to be further described later in this study. There are two ways to improve rotor-bearing
system stability. One is to redesign all rotor-bearing system, and another one is to amend bearing
configurations. Amend bearing configurations is more suitable when considering economy and

manufacturability.

General bearings include following bearings: plain journal bearings, axial groove bearings,
elliptical bearings, offset-half bearings, multi-lobe bearings, floating ring bearings, semi-floating
ring bearings, and tilting pad bearings. This study compares performance difference of automotive

turbochargers supported on some bearing types.

Multi-lobe bearings have better stability than plain cylindrical bearings. Zeidan et al. [1]
describe many types of bearing configurations include preload. Preload is a parameter that is often

used to change characteristics of the rotor-bearing system. Increased preload enhances fluid film



stiffness. On the other hand, an increase in preload reduces damping in a rotor-bearing system.

Adams [2] introduces several bearings from Zeidan [1], along with a brief discussion of
strengths and shortcomings of each: Floating axial groove bearings, four axial groove bearings,
floating-ring bearings, and tilting pad bearings. By using rotor dynamics software (DyRoBeS), result

shown tilting pad bearing design is most stable bearing design included in this research.

Similar to Michael, Alsaeed [3] introduce several bearings: floating ring bearings, six-oil-
groove bearings (with different configurations as external damping), 6-pocket bearings, elliptical
(lemon bore) bearings, and tilting-pad bearings. Though tilting-pad bearings provided stable
turbocharger rotor-bearing system, they are still relatively expensive to produce. Other types of
fluid-film journal bearings showed unaccepted instabilities in the linear running. However, a
turbocharger supported on floating ring bearings has a least unstable whirling operation. Floating-
ring design introduced an external damping by outer oil-film that re-stabilized whirling modes.
Hence, an attempt was made to find an optimum external damping turbocharger supported on six-
oil-groove bearings. Unfortunately, attempt to optimize whirling modes by adding damped supports

to six-oil-groove bearings was not successful.

Mondschein [4] developed TC rotor-dynamic model using floating ring bearings, six axial
groove bearings, eight axial groove bearings and ten axial groove bearings. Then they analyzed
stability, and compare with experimental tests. Previous work suggests that modeling turbocharger
load on compressor wheel rather than turbine wheel is more representative of actual operation
characteristic [3]. Therefore, FR and 6 AG cases were run applying 5, 10, 15, 20, and 25-pound loads
force on the compressor. 6AG and 8AG bearings performed similarly with 15lbs of compressor

loading. However, 8AG was unable to be loaded to 25lbs, and 6AG was unable to match the



performance of floating ring bearings. Despite improved performance of 6AG bearings with
compressor loading, linear analytical testing shows it fails to outperform stock FR bearings currently

used in production turbochargers.

TC rotor dynamic performance defined by stiffness and damping coefficients of oil-lubricated
bearings. Lund [6] discussed many bearings include elliptical bearings, 2-axial groove bearings, 3
lobe bearings, and offset cylindrical bearings. By calculating finite difference solutions of Reynolds

equations, they calculate stiffness and damping coefficients.

On this basis, Ferron [7] considers heat transfer between film and bush and both shaft of a finite
length journal bearing. They even considered cavitation and lubricant recirculation. They compare
predicted results such as pressure and temperature distribution on bearing wall with experimental
data. Their conclusion is bearing analysis should be considered thermal deformations. Along with

differential thermal dilatation between journal and bearing also essential.

With the development of computer technology, more and more researchers use a computer to
analyze thermal fluid dynamics. San Andrés [8] presents a thermo-hydrodynamic (THD) analysis
and computer program to predict static and dynamic force response of hydrostatic journal bearings,
annular seals, or damping bearings, and fixed arc-pad bearings. Especially six-recess hydrostatic

bearings which are using Space Shuttle Main Engine high-pressure oxidizer turbopumps.

Based on finite element analysis for complete rotor dynamics analysis and comprehensive
bearing performance calculations, Chen [9] developed computer software tool since 1991. This
software is powerful, yet easy to learn and use, engineering design/analysis software tools. This

study also uses this software to complete analysis of TC rotor-bearing system.



Most researchers discuss the performance of automotive TCs using floating ring bearings,
tilting pad bearings, and plain cylindrical bearings. This study compares the stability of automotive
TCs using 2-axial groove bearings, offset-half bearings, and multi-lobe bearings. Marine TCs are
wildly using offset-half bearings and multi-lobe bearings. This study discusses the new area of these

bearing types.



Chapter 3. Computational model of rotor-bearing system

This section describes a finite element model of an automotive TC rotating component using a

commercial rotordynamic software.

The first section describes a finite element model of automotive TCs rotor. Validation of rotor-
dynamics model requires a good correlation between measured and predicted rotor physical
properties, as well as free-free natural frequencies and mode shapes. This step is essential for proving

the accuracy of rotor structural model.

The second section describes models of each bearing using the computational bearing software.
Each TC supported on two bearings which named a turbine side bearing and a compressor side
bearing. This study discusses four types of bearings, every single TC using same bearing type. This
study using a constant lubricant viscosity to the easier compare characteristics difference between
each kind of bearings. Next chapter calculates characteristics of bearings such as stiffness and

damping force coefficients.

3.1 Finite element (FE) rotor-bearing system model

Figure 1 shows TC rotor assembly. To validate computational FE model, first measured
turbocharger dimension, polar moment of inertia and transverse moment of inertia, mass, the center
of gravity, and free-free mode natural frequencies and mode shape of the turbocharger. The overall
weight of the TC rotor is 1.51 N, and its center of gravity (C.G.) is located 76.901 mm from the

compressor wheel end. The measured mass moment of inertia is 2.101x10-4 kg-m?, and polar



moment of inertia is 1.780x10-5 kg-m2. Tables 1 through 4 list relevant dimensions of the TC rotor.

Fig. 1 Turbocharger rotor and bearing

Table 1 Length of TC rotor

Shaft & Thrust Thrust Compressor Assembled
. Compressor
Turbine Collar Washer Nut TC rotor
Measurement
127.7 25.8 12 1.46 7 127.7
[mm]
Prediction
127.7 25.8 12 1.46 7 127.7
[mm]
Difference
0% 0% 0% 0% 0% 0%
[%0]




Table 2 Mass of TC rotor

Shaft & Thrust Thrust Compressor Assembled
] Compressor
Turbine Collar Washer Nut TC rotor
Measurement
109.3 32.8 6 11 1.9 151
[g]
Prediction
109.280 32.800 6.044 1.098 1.900 151.12
[g]
Difference
0% 0% 0% 0% 0% 0%
[%0]
Table 3 Moment of inertia of TC rotor
Shaft & Thrust Thrust Compressor Assembled
f Compressor
Turbine Collar ~ Washer Nut TC rotor
Measurement 6.668% & 1.149x% 8.216x 2 4
2 5 4.177x10 7 10 1.114x10 2.101x10
[kg-m] 10 10 10
Prediction 6.668x 5 1.129x 1.147x 2 4
2 5 4.177x10 7 8 1.114x10 2.048x10
[kg-m] 10 10 10
Difference
0% 0% 2% 93% 0% 3%
[%0]
Table 4 Polar moment of inertia of TC rotor
Shaft & Thrust Thrust Compressor  Assembled
) Compressor
Turbine Collar Washer Nut TC rotor
Measurement 1.113x " 1.298x 2.529% 8 =
2 5 6.215x10 7 8 1.952x10 1.750x10
[kg-m] 10 10 10
Prediction 1.113x % 3 3 3 =
2 5 6.215x10 1.256x10 2.255x10 1.952x10 1.751x10
[kg-m ] 10
Difference
0% 0% 3% 12% 0% 0%

[%0]




Figure 2 displays the TC rotor-dynamic structural model. The model includes lumped masses

for the compressor wheel, the turbine wheel, and the thrust collar.

-
i

N

Compressor wheel Turbine wheel

N

Thrust collar

Compressor nut

Fig. 2 Rotordynamic structural model of TC rotor

Free-free mode shapes and natural frequencies of TC rotor are measured, i.e., the rotor model
does not include any support without rotation. The test rig consisted of FFT signal analyzer and a
pair of acceleration sensors. Figure 3 displays the test rig of FFT signal analyzer and acceleration

SENSOrs.



Fig. 3 Free-Free mode natural frequencies and mode shapes measurement using FFT signal
analyzer and acceleration sensors

The measured values are similar to the predicted values. Figure 4 compares the measured and

predicted results of first free-free mode shapes and natural frequencies of TC rotor. The measured

and predicted first free-free natural frequency is 1,456 Hz and 1,339.6 Hz, respectively. Therefore,

the difference between measurement and prediction is 8 %.

Critical Speed Mode Shape, Mode No.= 2
Spin/Whirl Ratio = 0, Stiffness: Kxx
Natural Frequency = 80492 rpm = 1341.54 Hz

< Measured 1t mode shape
\gg\ 43 N
Pt 4l ; N
-~ B : ! . -
~LI | [V 1
N
Predicted free-free mode shape

Fig. 4 Measured and predicted first free-free mode shapes of TC rotor
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Figure 5 compares measurement and prediction of second free-free mode shapes and natural
frequencies of TC rotor. The measured and predicted second free-free natural frequency is 4,282 Hz
and 4,512.4 Hz, respectively. Therefore, the difference between measurement and prediction is

5.11%.

Critical Speed Mode Shape, Mode No.= 3
Spin/Whirl Ratio = 0, Stiffness: Kxx
Natural Frequency = 271313 rpm = 4521.88 Hz
Measured 1st mode shape

o
M 1 N A
‘ |

:
\
TN
N
o
e
.

> ledag *
11 T
1T

N sz\.

Predicted free-free mode shape

Fig. 5 Measured and predicted second free-free mode shapes of TC rotor

Figure 6 displays TC rotor dynamic structural model supported on fluid film bearings. This
model includes 49 finite elements (12 stations), two bearings and four imbalance masses. Each

spring connections represent one fluid film bearing.

11



Imbalance mass -«
(0.1 g-mm)

luid film bearings

g ™M

AN

4

b

,,,,, 77

Fig. 6 Rotordynamic model for TC rotor-bearing system.

3.2 Bearing modeling

As shown in figure 7, static loads of compressor side bearing are -0.1821N, and turbine side

bearing are 1.673N, respectively.

% Direction Deflection, Max: = 0.0039300
Stn= 6 Fy=-0.1821 Mx= 0.0000
Stn= 7 Fy=1.673 Mx=0.0000 A

T Fecorcd

Fig. 7 Static load of TC rotor
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The commercial bearing program calculates static and dynamic characteristic based on bearing
operating in equilibrium position for a designated shaft speed range. Rotor speed ranges from 10,000
rpm to 200,000 rpm. The value of lubricant (SAE 0W30) viscosity is 6493(Pa-s), and the density
value is 0.7785(grams/CC).There are four types of bearings discussion in this study. Offset-half
bearings have 160 degrees of each pad, 3 lobe bearings have 100 degrees of each pad, and 4 lobe
bearings have 70 degrees of each pad. On the purpose of this study, all bearings using similar
physical properties. Tables 5 and 6 display input properties of bearing analysis. Figure 9 describes
the schematic view of 2-axial groove bearing, offset-half bearings, 3 lobe bearings and 4 lobe

bearings. Appendix A includes the detail inputs of each bearing (Figure A.16 through A.23).
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Table 5 Bearing dimensions and support loads
Axial Rotor Bearing Radial Bearing
Length Diameter, D Diameter, Clearance, Load
(mm) (mm) Db (mm) Cb (mm) (N)
Turbine side bearing 6 6.934 6.993 0.030 1.673
Compressor side bearing 6 6.934 6.993 0.030 -0.1821
Table 6 Lubricant performances and other bearing configurations
Lubricant Lubricant
Dynamic density Preload Offset
viscosity (cP) (9/CC)
Two axial groove bearing
6.493 0.7785 0 0
(160 degree pad)
offset half bearing
6.493 0.7785 0.5 0.8
(160 degree pad)
3 lobe bearing
6.493 0.7785 0.5 0.8
(100 degree pad)
4 lobe bearing
6.493 0.7785 0.5 0.8

(70 degree pad)

Bearing preload and offset determine dynamic coefficients (stiffness and damping). Preload

bearings mean bearing pads have a larger radius than a journal. Preloading let pad center of curvature

move closer to journal, to create a higher pressure. Variable L often define preload value of a bearing

by which defined as equation (1):

m= (Cp'Cb)/Cp = 1'Cb/Cp
Ch = rp-rjand Cy, = rp-1;

where Cp, is the bearing minimum assembled radial clearance; C,

M

is the pad machined radial

clearance; ry is the bearing assembled radial at minimum clearance, and rj is the journal shaft radial.
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When preload value is zero means no preload, then the center of the rotor and the center of the
bearing are coinciding. In this configuration, this bearing is a cylindrical journal bearing. When

preload value equal to 1, the shaft contact the bearing.

When preload exists on bearing and shaft always rotated in one direction, pads can be offset,
which is another important configuration of bearings. In mathematical significance, the offset value
is a fraction of converging pad surface to full arc length. When offset value is equal to 0.5 means,
there is no offset of the pad. If offset value less than 0.5, that means pad surface becomes diverging.
Otherwise, offset value larger than 0.5 provides convergent pad surface. Offset value defined by

equation (2):

a = (0p-6))/ (6-6)) (2)
where 6, is the angle from negative load vector (y-axis) to a line connects bearing center and pad
center of curvature. 4, is the angle from negative load vector (y-axis) to leading edge of the first lobe.
6 is the angle from negative load vector (y-axis) to trailing edge of the first lobe. To better

understand preload and offset, Figure 8 describes an illustration of a 3 lobe bearing.
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Fig. 9 Schematic view of (a) plain cylindrical bearing, (b) axial groove bearing, (c) offset half
bearing, (d) 3 lobe bearing, and (e) 4 lobe bearing
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Chapter 4. Predicted results

The first section of this chapter presents the static characteristic of fluid-film bearing analysis,
including predicted eccentricity ratio, attitude angle, minimum film thickness and maximum film
pressure and frictional power loss of lubricant films versus rotor speed. These analyses are to
investigate the effect of bearing configurations on bearing performance. Static characteristics can

calculate dynamic characteristics (stiffness and damping coefficients).

Next, analytical procedure results of estimating stability on turbocharger rotor are given by
eigenvalue analysis. Moreover, compare the effect of different configurations of bearings on rotor-

bearing system stability.

4.1 Predicted bearing performance

This section presents the static and the dynamic characteristic of bearing analysis. To more
intuitive comparison of the bearing configuration on performance impact, export the calculation
result to make a table. Because of the same reason, this study tries to use same axis dimensions in

one kind of particular result. These bearing analysis inputs show in Appendix A.

Bearing reaction force from oil film bearing varies with different rotor speeds, which means that the
equilibrium position is becoming different with different rotor speed. Confirm the rotor center locus with rotor
speed variation, eccentricity ratio, and attitude angle are using to achieve this goal. Figure 10 and 11 describe
eccentricity ratios versus rotor speed of each bearing. All figures show that when rotor speed increases,

eccentricity ratio becomes lower. The result showed that center of rotor and journal become closer when rotor
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speed increases. At low speed, turbine side bearings have much higher eccentricity ratio than compressor side
bearings; this may because turbine side bearings forced on higher static load from the rotor. On the other hand,

these figures show the center of 2-axial groove bearings has the lowest eccentricity in operation

rotor speed.
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Fig. 10 Eccentricity ratio of compressor side bearing
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Fig. 11 Eccentricity ratio of turbine side bearing

Figures 12 and 13 describe attitude angles [degree] of each bearing. Attitude angles of each
bearing tend to increase when shaft speed became higher. Attitude angles increased amplitude in
compressor side bearings are very small, close to constant. On the other hand, attitude angles in
compressor side bearings are more significant than turbine side bearings. Reason for these

phenomena may be the static load on compressor side is negative. Note that offset-half bearings

have lower attitude angles than other bearings.
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Figures 14 and 15 describe ratios between film thickness and bearing clearance of each bearing.
As the name suggests, bearing contacts journal wall if the minimum film thickness is 0. During
Reynold’s equation, the position of minimum film thickness presents highest flow rate of highest
pressure. Minimum film thickness decreases mean shaft center close to journal center. Minimum

film thickness becomes higher when shaft speed increases.
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Fig. 14 Ratios of minimum film thickness over bearing clearance of compressor side bearing.
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Fig. 15 Ratios of minimum film thickness over bearing clearance of turbine side bearing.

Figures 16 and 17 present maximum film pressures of each bearing. Apparently, offset bearings
have a significant impact on maximum film pressure. In 2-axial groove bearings, maximum film
pressures almost constant when increasing shaft speed. The pressure in turbine side bearings was
larger than compressor side at low shaft speed, which because of the difference of static loads from
the rotor. Maximum film pressures are approximately linearly increasing with shaft speed to offset
bearings. 3 lobe bearings have secondary maximum film pressures on both sides. 4 lobe bearings
have less maximum film pressures than three lobe bearings. 2-axial groove bearings have lowest

maximum film pressures.
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Fig. 16 Maximum film pressure of compressor side bearing.
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Stiffness coefficients are proportional to rotational speed and fluid viscosity. It means there is
no fluid film bearing stiffness without rotation. Figure 18 and Figure 19 present stiffness coefficients
Kxx of each bearing. Naturally, offset-half bearings and multi-lobe bearings present higher stiffness
coefficients Ky than 2-axial groove bearings. Similar to the result of maximum film pressure, higher
shaft speed increases higher stiffness coefficients Kyx absolute value than other bearings, and this
process is approximately linear. In both side bearings, 3 lobe bearing stiffness coefficients Ky are
highest, 4 lobe bearing stiffness coefficients Ky are higher than offset half bearing stiffness
coefficients Ky and lowest stiffness coefficients Ky are coming from 2-axial groove bearings. Note
that on turbine side, this situation becomes precisely opposite when rotor speed at low speed

(<25,000 rpm).
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Fig. 18 Stiffness coefficients Kxx of compressor side bearing
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Fig. 19 Stiffness coefficients Kx of turbine side bearing

Figures 20 through 23 present cross-coupled stiffness coefficients of each bearing. Similar to
stiffness coefficients Ky, higher shaft speed increases higher cross-coupled stiffness absolute value
than other bearings. Moreover, this process is also approximately linear. In both side bearings, cross-
coupled stiffness coefficients Ky, in 3 lobe bearings are larger than other bearings. 4 lobe bearings
have larger cross-coupled stiffness coefficients Ky, than the 2-axial groove bearing. Offset half

bearings have lowest cross-coupled stiffness coefficients Kyy.

All cross-coupled stiffness coefficients Kyx are negative values. In both side bearings, cross-
coupled stiffness coefficients Ky in 4 lobe bearings are larger than other bearings. 3 lobe bearings
have larger cross-coupled stiffness coefficients Kyx than offset half bearing. 2-axial groove bearings

have lowest cross-coupled stiffness coefficients Kyx.
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Fig. 21 Stiffness coefficients Kxy of turbine side bearing.
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Figures 24 and 25 show analysis results of stiffness coefficients in the y-direction, offset-half
bearings present higher stiffness coefficients K,y than other bearings. Similar to stiffness coefficients
Kxx, higher shaft speed of bearings have higher stiffness coefficients than other bearings. Moreover,
this process is approximately linear. In both side bearings, offset half bearing stiffness coefficients
Kyy are highest, 3 lobe bearing stiffness coefficients Kyy are higher than 4 lobe bearing stiffness

coefficients Kyy, and lowest bearings stiffness coefficients Ky, are coming from 2-axial groove

bearings.
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Fig. 24 Stiffness coefficients Kyy of compressor side bearing.
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Fig. 25 Stiffness coefficients Kyy of turbine side bearing.

Damping coefficients depend on fluid viscosity and journal equilibrium position. When the
viscosity is a constant value, damping coefficient only depends on equilibrium position. Figures 26
and 27 present damping coefficients of each bearing. Damping coefficients Cy of compressor side
bearings are almost constant. 3 lobe bearings show highest damping coefficients on the compressor
side. 4 lobe bearing damping coefficients Cy are higher than 2-axial groove bearings, and lowest
damping coefficients Cy are coming from offset half bearings. On turbine side, these damping

coefficients Cx are similar in high shaft speed (> 25,000 rpm).
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Figures 28 and 29 present negative value of cross-coupled damping coefficients C,, of each
bearing. When rotation speed is increasing, all bearings cross-coupled damping coefficients Cyy
increase slowly. 0045ven in compressor side offset-half bearings, cross-coupled damping
coefficients are almost constant value in whole operation speed range. Turbine side bearing has
relatively significant changes in damping coefficients Cyy. It means equilibrium position also has a
relatively significant change. Compare lobe number, offset half bearings had smallest damping
coefficients Cyy in turbine side bearing. By the way, Figures 30 and 31 show figures of damping

coefficients Cyx are similar to damping coefficients Cyy.
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Fig. 28 Damping coefficients Cxy of compressor side bearing.
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Fig. 31 Damping coefficients Cyx of turbine side bearing.

Below two damping coefficient figures shown damping coefficients C,y. Apparently, 2-axial
groove bearings have highest damping coefficient C,y; other bearings have damping coefficients Cyy
almost equal to 0. Figures 32 and 33 present damping coefficients C,y of TC supported on each

bearing.
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Preload m and offset a are the significant configurations of multi-lobe bearing analysis. For a
more intuitive analysis of these configurations effect of the multi-lobe bearing. The next research
compares the dynamic force coefficients (stiffness and damping) of 3 lobe bearing using different

preload and offset. When preload is equal to 0, the offset does not make sense in this condition.

Figures 34 through 37 show direct stiffness force coefficients Kyx and Kyy of 3 lobe bearing
using different preload and offset. When preload=0, the direct stiffness force coefficients change
negligible (or even decreases) as rotor speed increases. When preload is not equal to 0, the direct
stiffness force coefficients increases as rotor speed increases. In this case, higher offset provides
higher stiffness force coefficients. On the other hand, higher preload provides higher stiffness force
coefficients in the same offset condition. Appendix A include the input data of these bearings

(Figures A. 1 through A. 12).
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Fig. 34 Stiffness coefficients Kx of 3 lobe bearing (preload=0.25; no preload)
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Fig. 37 Stiffness coefficients Kyy of 3 lobe bearing (preload=0.5; no preload)

Figures 38 through 41 show cross-coupled stiffness force coefficients Ky, and Ky of 3 lobe
bearing using different preload and offset. When preload is not equal to 0, the direct stiffness force
coefficients increases as rotor speed increases. In this case, higher offset provides higher stiffness
force coefficients. On the other hand, higher preload provides lower stiffness force coefficients in

the same offset condition.
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Fig. 40 Stiffness coefficients -Kyx of 3 lobe bearing (preload=0.25; no preload)
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Fig. 41 Stiffness coefficients -Kyx of 3 lobe bearing (preload=0.5; no preload)
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Figures 42 through 45 show direct damping force coefficients Cy and Cyy of 3 lobe bearing
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using different preload and offset. When preload=0, the direct damping force coefficients change
negligible (or even decreases) as rotor speed increases. When preload is not equal to 0, the direct
damping force coefficients Cy are lowest. In this case, higher offset provides higher damping force
coefficients. On the other hand, higher preload provides lower damping force coefficients in the

same offset condition.
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Fig. 42 Damping coefficients Cxx of 3 lobe bearing (preload=0.25; no preload)
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Fig. 44 Damping coefficients Cyy of 3 lobe bearing (preload=0.25; no preload)
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Fig. 45 Damping coefficients Cxx of 3 lobe bearing (preload=0.5; no preload)

Figures 46 through 49 show cross-coupled damping force coefficients Cxy and Cyx of 3 lobe
bearing using different preload and offset. All the cross-coupled damping force coefficients Cy, and

Cyx become 0 when rotor speed increase.
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In the multi-lobe bearing, the pad length of bearing lobe is an important configuration. For a
more intuitive analysis of this configuration effect of the multi-lobe bearing. The next research
compares the dynamic force coefficients (stiffness and damping) of a 3 lobe bearing using different

pad angle. The bearing preload=0.5 and offset=0.5 in this comparison.

Figures 50 and 51 show direct stiffness force coefficients Ky and Ky of 3 lobe bearing using
different pad angle. Obviously, higher pad angle provides higher direct stiffness force coefficients

of the 3 lobe bearing.
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Fig. 50 Stiffness coefficients K« of 3 lobe bearing. Pad length of 120, 110, and 100 degrees
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Fig. 51 Stiffness coefficients Kyy of 3 lobe bearing. Pad length of 120, 110, and 100 degrees

Figures 52 and 53 show cross-coupled stiffness force coefficients Ky, and Ky of 3 lobe bearing
using different pad angle. Obviously, higher pad angle provides higher cross-coupled stiffness force

coefficients of the 3 lobe bearing.
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Figures 54 and 55 show direct damping force coefficients Cx and Cyy of 3 lobe bearing using
different pad angle. Obviously, higher pad angle provides higher direct damping force coefficients

of the 3 lobe bearing.
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Fig. 54 Damping coefficients Cxx of 3 lobe bearing. Pad length of 120, 110, and 100 degrees
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Figures 54 and 55 show cross-coupled damping force coefficients Cy and Cyx of 3 lobe bearing
using different pad angles. These figures show similar cross-coupled damping force coefficients of

3 lobe bearing using different pad angles.
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After analysis of bearings, this study export dynamic force coefficients (stiffness and damping)

into rotor-bearing system dynamic analysis.

4.2 Predicted rotordynamic performance

Input characteristic of this analysis is shaft rotational speeds and number of modes. The number
of modes is used to specify the number of processional modes that calculate mode shapes
(eigenvectors). Only lowest 4 to 6 processional modes are essential. More modes need for large

systems.

A complex eigenvalue A (lambda) is given by:

A =0+ jwg; (3)

Subscript i is mode number. If the damped natural frequency is non-zero, this is a processional

mode. Here oscillating frequency and damped natural frequency are same. If the damped natural

frequency is zero, this is a real mode (pure rigid body) or non-oscillating mode. Here is the equation

of logarithmic decrements:

§=1n(2L) )
where & (Delta) logarithmic decrement
x; amplitude of vibration at cycle i

x;+1 amplitude of vibration at cycle i+1
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Logarithmic decrement reduced from vibrations equation of motion:

®)

where: {==; C.=2Mw, = 2VKM

And where M  mass

C  damping
K  stiffness
6 Log. Dec.

6 > 0 stable or damped system
6 = 0 threshold of instability
§ < 0 unstable system

¢  damping ratio or damping factor

Linear eigenvalue analysis relies on the specification of stiffness and damping force
coefficients for lubricant oil films at turbine and compressor side bearings. Linearized stiffness and

damping force coefficients are calculated using commercial fluid film bearing program previously.

Existing configuration of turbocharger consists of the main rotor supported by four kinds of
bearings. Turbocharger operational speed ranges between 2,000 to 200,000 rpm. This analysis input

shows in Appendix B.

Figures 34 through 37 depict TC rotor mode shape plots at these three critical speeds supported

on each bearing. This study chooses mode shapes on same rotor speed (120 krpm) to compare mode
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shapes easier. Mark “C” means compressor side and mark “T”” means turbine side. In all operational
range, this research assumes rotor speed from 2 krpm to 200 krpm, 1%t critical speed is related to the
conical mode of the rotor. In the conical mode, the frequency is from 43.26 Hz to 301.21 Hz. 2nd
critical speed is related to rotor cylindrical-bending mode, showing greater motions at compressor
side bearing than at turbine side bearing of the rotor-bearing system. Linear eigenvalue analysis
shows frequency is from 66.77 Hz to 537.52 Hz in rotor speed from 2 krpm to 200 krpm. Last critical
speed is related to first bending mode of the rotor. In first bending mode, the frequency is from

1278.1 Hz to 2520.5 Hz.
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Fig. 58 TC rotor natural frequencies versus shaft speed. Rotor supported on 2-axial groove
bearings.
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Mode shapes at 120 krpm
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Fig. 61 TC rotor natural frequencies versus shaft speed. Rotor supported on 4 lobe
bearings.

Figures 38 through 41 depict TC damping ratios supported on each bearing. A stable system
has a damping ratio >0, and an unstable system has a negative damping ratio. Results show all rotor-
bearing systems are unstable. After analyzing each mode shapes, conical modes are unstable of all
bearings, and bending modes are stable of all bearings. The difference comes from the cylindrical
mode, 2-axial groove bearings and offset-half bearings have an unstable cylindrical mode in
operational range. 3 lobe bearing cylindrical mode become stable to unstable from rotor speed
increased from 30 to 32 krpm and 4 lobe bearing cylindrical mode become stable to unstable from

rotor speed increased from 26 to 28 krpm.
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The imbalance response needs to analysis shaft motion response. Figure 42 describes shaft
motion response versus shaft speed. Choose a position on compressor side because generally, the
maximum amplitude is happening at compressor end. Unit of amplitude is mm (peak-peak). For

each bearing, 4 lobe bearing has the most significant amplitude of 0.0658 mm when rotor speed

reaches 122 krpm.
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Fig. 66 Shaft motion amplitude versus shaft speed on compressor side.

Other significant results are transmitted bearing forces. Figures 43 and 44 describe transmitted
bearing forces versus shaft speed by using each kind of bearings. On both sides, offset-half bearing

support maximum transmitted force. Transmitted bearing force becomes maximum during shaft

speed from 100 krpm to 130 krpm of each bearing.
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Chapter 5. Conclusions

The current study presents progress on the automotive turbocharger rotor-bearing system
performance prediction using rotordynamics models. The predicted results show that the TC rotor
dynamic performance strongly relies on the bearing configurations. More importantly, this study
demonstrates the importance of using accurate rotor dynamic models for accurate predictions of

turbocharger dynamic stability. Most significant conclusions of this research follow.

The bearing configurations preload and offset have a significant impact on bearing dynamic
performance. The higher offset provides higher direct stiffness and damping force coefficients of
multi-lobe bearing (if bearing preloaded). If bearing preload equal to 0, the offset does not make
sense of bearing performance. The preload does have the effect of bearing dynamic force

coefficients (stiffness and damping), but the relationship needs further research.

The bearing pad angles have a significant impact on bearing dynamic performance. The higher
pad angle provides higher direct stiffness and damping force coefficients of the multi-lobe bearing.
The higher pad angle even provides higher cross-coupled stiffness force coefficients of the multi-

lobe bearing.

All predicted results show unstable conical modes, and stable bending modes. The TC
supported on 2-axial groove bearings, and offset-half bearings have unstable cylindrical modes in
the operational range. The TC supported on 3 lobe bearing cylindrical mode becomes unstable when
the rotor speed reaches 32 krpm. The TC supported on 4 lobe bearing cylindrical mode become

unstable when the rotor speed reaches 28 krpm.
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4 lobe bearings have most significant imbalance response at the compressor end. When the TC
rotor supported on offset-half bearings, the transmitted bearing force is more significant than other

types of bearings.
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Appendix A

Figure A.1 through A.12 depict the input data of preload and offset effects of 3 lobe bearing

analysis. The pad angle of 3 lobe bearings is 100 degree for each analysis condition.

Comment: Ipreload and offset effect

Coordinates: IStandard Coordinates (¥-Y) LI Load Angle: [270 degree
Bearing Type: |5 - Three Lobe ;I K and C Coordinate Angle: |0 degree

Analysis Option: IConstarrt \iscosity LI

— Bearing Load = W0 + W1 x RPFM + W2 x RPM™2 —8—

Convert |Un'rt5:||'tl'|etric v| Wo: |1.6?3 Wi: |D w2 |D

Il Length L: |6
S {rom) Rotor Speeds (RPM) [ Additional Speeds
Joumal Dia. D: |8.933 {mm) Start: [10000 End: [200000  Inc.: [1000
Brg Radial Cir Cb: |D-D-?- {mm})
Lubricant Dynamic Viscosity: |6.493 {cPoise)

Mumber of Pads: I.'EI. Density: Iﬂ-??35 {arams/CC)

Bearing Data for Pad # 1

Leading Edge: |1DD Preload: ID Advanced Fetaures
Trailing Edge: IZDD Offset: ID.E Mo

Save | Save As Run Close

Mew | Open |

Fig. A. 1 Input data of preload and offset effect (3 lobe bearing turbine side; preload=0; offset=0.5)
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Comment: Ipreluad and offset effect

Coordinates: |Standard Coordinates (%-Y) LI Load Angle: [270 degres
Bearing Type: |5 - Three Lobe j K and C Coordinate Angle: |0 degree

Analysis Option: ICnnstarrt Viscosity ;I — Bearing Load = W0 + W1x RPM + W2x RPM™2 —08——

Convert |Un'rts:II'U'|etric vI W |1.G?3 W1 |ﬂ W2 |u

Puial Length L: |6 {mm) =
Rotor Speeds (RPM) [~ Additional Spesds
Joumnal Dia. D: Iﬁm {mm) Start: |mm)u End: |2mnm Inc |1mu

Brg Radial CIr Cb: |D-DE'- {mm)
Lubricart Cynamic Viscosity: I'E.453 {cPoise)
Mumber of Pads: |3 Density: IU.WEE (grams/CC)

Bearing Data for Pad &1

Leading Edge: I'I{H] Preload: ID Advanced Fetaures
Trailing Edge: IZ'DD Ciffset: ID.E No

Save | Save As | Run | Cloge |

Mew | Open |

Fig. A. 2 Input data of preload and offset effect (3 lobe bearing turbine side; preload=0; offset=0.6)

Comment: Iprelcad and offset effect

Coordinates: IStandard Coordinates (%-Y) ;I Load Angle: 270 degree
Bearing Type: |5 - Three Lobe ;I K and C Coordinate Angle: [0 degree

Anahysis Option: ICcnstarrt Viscosity LI — Bearing Load = W0 + W1x RPM + W2 x RPM™2 ——

Convert |Ur1'rt5:|Metric vI Wi |1.'ET-"3 W IEI W2 I{I

Auial Length L: IE
= fn) Rotar Speeds RPM)) [ Addiional Speeds
Joumal Dia. D: Iﬁﬂﬂa {mm) Start: [10000 End: [200000 " Inc.: [1000
Brg Radial Cir Cb: |0.03 {mm}) I
Lubricant Dynamic Viscosity: |6.433 (cPoise)
Mumber of Pads: |3 Density: |0.7785 {grams/CC)

Bearing Data for Pad # 1

Leading Edge: |1Dﬂ Preload: Iﬂ' Advanced Fetaures
Trailing Edge: IQDD Offset: ID.? Mo

Save | Save As Run Close

Mew | COpen |

Fig. A. 3 Input data of preload and offset effect (3 lobe bearing turbine side; preload=0; offset=0.7)



Commert: Iprelnad and offset effect

Coordinates: |Standard Coordinates (%)

;I Load Angle: |270 degree

Bearing Type: |5 - Three Lobe

Analysis Option: ICcnstarrt Viscosity j

j K and C Coordinate Angle: [0 degree

—Bearing Load = W0 + W1x RPM + W2x RPM™2 — 00—

Convert |Un'rts:|ru'lemc vI Wo: |1.G?3 Wi: |ﬂ W2 |u
Peial Length L: |6 m
- {rm) Rotor Speeds (RPM) [~ Additional Speeds
Joumal Dia. D: [6-553 {mm) Start: [10000 End: [200000  Inc.: [1000
Brg Radial CIr Cb: |0.03 {mm})
Lubricant Dynamic Viscosiy: |6.493 {cPoise)
MNumber of Pads: IHI Density: |0.7785 {grams/CC)
Bearing Data for Pad # 1
Leading Edge: I'HI' Preload: ID T=rroed| et mwes
Trailing Edge: IZ'D'D Ciffset: ID.E Mo
Save | Save As | R | Close |

Mew | Open |

Fig. A. 4 Input data of preload and offset effect (3 lobe bearing turbine side; preload=0; offset=0.8)

Comment: Ipreluad and offset effect

Coordinates: IStandard Coordinates (%-Y)

;I Load Angle: |270 degree

Bearing Type: |5 - Three Lobe

LI K and C Coordinate &ngle: |0 degree

—Bearing Load = W0 + W1 x RPM + W2x RPM"2

wy

Analysis Option: IConstarrt Viscosity j
Convert |Ur1'rt5:||'u'|e‘tric vI Wo: I'I.'ET-"B W: ID W2 ID
Podal Length L: |6 m
o ! Rotor Speeds (RPM) [~ Additional Speeds
Joumal Dia. D: |6.333 mm) start: [10000 End: [200000  inc.: [1000
Brg Radial Cir Cb: [0.02 {mm) I—
Lubricant Cynamic Viscosity: [5.493 {cPoise)
Mumber of Pads: |3 Density: |0.7785 {grams/CC)
Bearing Data for Pad # 1
Leading Edge: I'ID'D Preload: ID.EE e Tee FrEr ST
Traiing Edge: IZ'D'D Offset: ID.5 Mo
Save | Save As Run Close

Mew | Cpen |

Fig. A. 5 Input data of preload and offset effect (3 lobe bearing turbine side; preload=0.25; offset=0.5)



Commert: Iprelnad and offset effect

Coordinates: IStandard Coordinates (%-Y) ﬂ Load Angle:|270 degree
Bearing Type: |5 - Three Lobe ;I K and C Coordinate &ngle: |0 degres

Analysis Option: ICcnstarrt Viscosity LI — Bearing Load = W0 + W1x RPM + W2x RPM™2 —0——

Convert |Ur1its:|Me¢ric -] WO |1.E?3 Wi |D w2 |D

Mual Length L: |6
st fmm) Rotor Speeds (RPM) | Additional Speeds
Joumal Dia. D: |8.933 mm) Start: |1umu End: |20m-u-u Inc.: |1ﬂm
Radial Cir Ch: Iﬂ-m m
g o) Lubricant Cynamic Viscosity: |5.493 {cPoise)
Mumber of Pads: |3 Density: |0.7785 {grams/CC)

Bearing Data for Pad # 1

Leading Edge: I'IDI] Preload: ID.EE Advanced Fetaures
Trailing Edge: IQ'DD Offset: ID.G Mo

Save | Save As | Run | Cloge |

Mew | Open |

Fig. A. 6 Input data of preload and offset effect (3 lobe bearing turbine side; preload=0.25; offset=0.6)

Comment: Iprelnad and offset effect

Coordinates: IStandard Coordinates [%-1) ;I Load Angls: 270 degree
Bearing Type: |5- Three Lobe ;I K and C Coordinate Sngle: |0 degree

Analysis Option: ICcnstarrt Viscosity ﬂ

—Bearing Load = W0 + W1 x RPM + W2 x RPM™2 —M—

Convert |Unit5:||".|'letric vI W |1-'5?3 W ID Wz ID

Sl Lenath L IE
— ) R Sanade BOM[I” | Addiionsl Speade
Joumal Dia. D: I'E"ﬂij‘*:l fmm) Start: [10000 End: [200000  inc.: [1000
Brg Radial Cir Cb: |0.02 {mm}) I—
Lubricant Dynamic Viscosity: |6.453 (cPoise)
Number of Pads: |3 Density: |0.7785 {grams/CC)

Bearing Data for Pad # 1

Leading Edge: I'I[H] Preload: ID.Z& Advanced Fetaures
Trailing Edge: IQD'D Oiffset: ID.T-" Mo

Save | Save As Run Close

Mew | COpen |

Fig. A. 7 Input data of preload and offset effect (3 lobe bearing turbine side; preload=0.25; offset=0.7)
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Comment: Ipre-lnad and offset effect

Coordinates: |Standard Coordinates (%-1) LI Load Angle: |270 degree
Bearing Type: |5 - Three Lobe ;I K and C Coordinate Angle: |0 degree
Anatysis Option: |Cnnstarrt Viscosity ;' —Bearing Load = W0 + W1x RPM + W2x RPM™2—{N}——
Convert | Units: Il'u'letric vI Wo: |1 73 W1 |1] w2 |u
Poial Length L: |6 m
- {rm) Rotor Speeds (RPM) [~ Addtional Speeds
Joumal Dia. D: IG"m (mm) Start: [10000 End: [200000  inc.: [1000
Brg Radial CIr Cb: |ﬂ-03 {mm) I—
Lubricart Cynamic Viscosity: |6.493 {cPoise)
Mumber of Pads: |3 Density: |0.7785% {grams/CC)

Bearing Data for Pad # 1

Leading Edge: Imﬂ Preload: ID.25 1 Frt e
Trailing Edge: IZW Offset: I{I.B Mo

Mew | Cpen | Save | Save As | Run | Close |

Fig. A. 8 Input data of preload and offset effect (3 lobe bearing turbine side; preload=0.25; offset=0.8)

Commert: Iprelnad and offset effect

Coordinates: IStandard Coordinates (%-Y) ﬂ Load Angle: |270 degree
Bearing Type: |5 - Three Lobe ;I K and C Coordinate Angle: [0 degres
Analysis Option: ICcnstarrt Viscosity LI — Bearing Load = W0 + W1x RPM + W2x RPM™2 —0——

Convert |Ur1its:||'u'|e¢ric vI Wi ITE?E W Iti we: I‘I]

Mual Length L: |6
st fmm) Rotor Speeds [BPN) -~ [ Additional Speeds
Joumal Dia. D: |8.933 mm) Start: |1umu End: |20m-u-u Inc.: |1ﬂm
Brg Radial Cir Cb: |0.03 {mm) I—
Lubricant Cynamic Viscosity: |5.493 {cPoise)
Mumber of Pads: |3 Density: |0.7785 {grams/CC)

Bearing Data for Pad # 1

Leading Edge: I'IDI] Preload: ID.E Advanced Fetaures
Trailing Edge: IQ'DD Offset: ID.E Mo

Mew | Open | Save | Save As Run Close

Fig. A. 9 Input data of preload and offset effect (3 lobe bearing turbine side; preload=0.5; offset=0.5)
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Comment: Ipreluad and offset effect
Coordinates: |Star1dard Coordinates (£-r) ;I Load Angle: |270 degree
j K and C Coordinate Angle: |0 degree

—Bearing Load = W0 + W1 x RPM + W2x RPM™2 —

Bearing Type: |5 - Three Lobe
Analysis Option: IConstarrt \igcosity ;I

Convert |Un'rts:II'U'Ie‘tric vI Wo: |1.E?3 W1: |ﬂ w2 ID

Pl Length L: IG
al Lengt fmm) Rotor Speeds (RPM) [ Additional Speeds
Joumal Dia. D: |5.933 mm) Stat: [10000 End: [200000  Inc:: [1000
Brg Radial Cir Ch: |D-DE'- {mmy)
Lubricant Cynamic Viscosity: |6.4593 {cPoise)

Mumber of Pads: |3 Density: I'I]'_"'?35 (grams/CC)
Bearing Data for Pad &1
Leading Edge: I'IDD Preload: ID.E Advanced Fetaures
Trailing Edge: IZ'DD Offset: ID.E No

Save As | Run |

Cloge |

Mew | COpen | Save |

Fig. A. 10 Input data of preload and offset effect (3 lobe bearing turbine side; preload=0.5; offset=0.6)

Load &ngls: [270 degree

Coordinates: IStandard Coordinates (¥-1) LI
;I K and C Coordinate Angle: |0 degree

Bearing Type: |5 - Three Lobe
Analysis Option: ICcnstarrt Viscosity ;I — Bearing Load = W0 + W1x RPM + W2 x RPM™2 —4
W2 Iﬂ

Convert | Units: |ru1e¢nc -] WO: |1.E?3 Wi: |D

Comment: Iprelcad and offset effect

Podal Length L: |6 m
o {mm) Rotor Speeds (RPM) [ Addtional Speeds
Joumal Dia. D: IE'HHE' {mm) Star: [10000 End: [200000 " Inc.: [1000
Brg Radial Cir Cb: |ﬂ.ﬂ'3 {mm})
Lubricant Cyriamic Viscosity: |6.493 (cPoise)

Mumber of Pads: |3 Density: ID_WBE {grams/CC)
Bearing Data for Pad # 1
Leading Edge: I'H}D Preload: ID.E e B
Trailing Edge: IQ'DD Offset: ID.T-" Mo

Save As Run

Close

Mew | Open | Save |

Fig. A. 11 Input data of preload and offset effect (3 lobe bearing turbine side; preload=0.5; offset=0.7)




Comment: Ipreluad and offset effect

Coordinates: IStandard Coordinates (¥-) LI Load Angle: |270 deqgres
Bearing Type: |5 - Three Lobe ;I K and C Coordinate Angle: [0 degree

— Bearing Load = W0 + W1 x RPM + W2 x RPM™2 ——

Analysis Option: IConstarrt Viscosity LI

Convert |Ur1'rt5:ll".l'le‘tric vI Wo: |1-5?3 W ID wa ID

Podal Length L: |6 {mm}
Rotor Speeds (RPM) [~ Additional Speeds
Joumal Dia. D: IE'?"‘E"3 mm) Start: 10000 End: [200000  inc.: [1000
Brg Radial Cir Cb: |0.02 {mrm) Ii
Lubricart Cynamic Viscosiy: |6.453 {cPoise)
Mumber of Pads: IH. Density: |0.7785 {grams/CC)

Bearing Data for Pad &1

Leading Edge: IH}D Preload: IEI.E Behericrd Fetenres
Trailing Edge: IZW Offset: ID.R Mo

Save | Save As Run Cloze

Mew | Open |

Fig. A. 12 Input data of preload and offset effect (3 lobe bearing turbine side; preload=0.5; offset=0.8)

Figure A.13 through A.15 depict the input data of pad angle effect of 3 lobe bearing analysis.

The preload=0.5 and offset=0.5 of 3 lobe bearings are set for each analysis condition.
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Comment: Ipadlengtheﬁect

Coordinates: IStandard Coordinates (¥-Y) ;I Load Angle: [270 degree
Bearing Type: |5'-|'hl"3'E Lobe LI K and C Coordinate Angle: |0 degree

Analysis Option: ICcnstarrt Viscosity ;I — Bearing Load = W0 + W1x RPM = W2x RPM™2 —:—

Convert |Un'rt5:||'tl'|e‘tric vl W I'I.G?El- Wi ID Wa- ID

Podal Length L: |6 {mm) =
Riotor Speeds (RPM) [T Additional Speeds
Joumal Dia. D: Iﬁ'ﬂﬂ‘?' mm) Start: [10000 End: [200000  Inc.: [1000
Brg Radial Cir Ch: |D-D-?- {mm}
Lubricant Dynamic Viscosity: I'E.453 {cPoise)
Mumber of Pads: |3 Density: |0.7785 {grams/CC)

Bearing Data for Pad # 1

Leading Edge: I'IDD Preload: ID.E Advanced Fetaures
Trailing Edge: IZDD Offget: ID.E Mo

Mew | Open | Save | Save Az |

Close |

Fig. A. 13 Input data of pad angle effect (3 lobe bearing turbine side; preload=0.5; offset=0.5; 100 degree)

Comment: Ipadlengtheﬁed

Coordinates: IStandard Coordinates (¥-Y) ;I Load Angle: 270 degree
Bearing Type: |5 - Three Lobe ;I K and C Coordinate &ngle: |0 degree

Analysis Option: ICcnstarrt Viscosity LI

Convert |Ur1its:||"-1'|e‘tn'c vI W0: I'I.E?E Wi1: ID W2 I'I]

— Bearing Load = W0 + W1x RFM = W2 x RPM™2 —28—

Iual Length L: [6
i fmm} Ao Speetis EPNYP | Addiional Speeds
Joumal Dia. D: |8-993 mm) Start: |1D£H}D End: |2[muu Inc.: |1mu
Brg Radial CIr Ch: (0.03 {mm}
Lubricant Cynamic Viscosity: IE.433 {cPoise)
Mumber of Pads: |3 Density: |0.7785 {grams/CC)

Bearing Data for Pad # 1

Leading Edge: |55 Preload: ID.E Advanced Fetaures
Trailing Edge: |2ﬂ5 Offset: ID.E Mo

Save As Run Close

MNew | COpen | Save |

Fig. A. 14 Input data of pad angle effect (3 lobe bearing turbine side; preload=0.5; offset=0.5; 110 degree)
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Comment: Ipadlengtheﬁect

Coordinates: IStandard Coordinates [%-Y) ;I Load Angle:|270 degree
Bearing Type: |5'Thl"3€ Lobe LI K and C Coordinate Angle: |0 degree

Anahysis Option: |Cunstar|t Viscosity LI

— Bearing Load = W0 + W1 x RPM + W2 x RPM™2 —i—

Convert |Ur1'rts:||'u'|e¢ric vI Wo: |1.'E?3 W: ID W2: ID

Fodal Length L: |6 {mm}
Rotor Speeds (RPM) [~ Additional Speeds
Joumal Dia. D: |5_553 mm) Start: [10000 End: [200000  inc.: [1000
Brg Radial CIr Cb: |D-D-?- {mmy)
Lubricant Chynamic Viscosity: Iﬁ.m {cPoise)
Number of Pads: |3 Density: |0.7785 {grams/CC)

Bearing Data for Fad # 1

Leading Edge: IB'I] Preload: ID.& e e —
Traling Edge: IQW Oiffset: ID.& Mo

Save | Save A= Run Close

Mew | Cpen |

Fig. A. 15 Input data of pad angle effect (3 lobe bearing turbine side; preload=0.5; offset=0.5; 120 degree)
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Figure A.16 through A.23 depict the input data of bearing type effect analysis. Each TCs
supported on two bearings, compressor side bearings, and turbine side bearings. 2-axial groove
bearings have 160 degree angle of each pad. The preload and offset of 2-axial groove bearings are

all 0. Offset-halves bearings, 3 lobe bearings, and 4 lobe bearings have 0.5 preload and 0.8 offset.

Comment: |Frl:||'|t bearing {Compressor side)|

Coordinates: |Stanu:|ard Coordinates (%-Y) j Load Angle:|270 degree
Bearing Type: |2 - Two fuwial Groove j K and C Coordinate Angle: |0 degree

R,

Bearing Load = W0 + W1 x RPM + W2x RPM™2 —M

Analysis Option: |C|:unstar|t Viscosity j

Convert | Units: [Metric - Wo: |-[:-.1sz1 Wi: |[:- w2 |D

Puial Length L: |6 {mm) =
Rotor Speeds (RPM) [ Additional Speeds
Joumal Dia. D: {8353 mm) Start: 10000 End: [200000  inc.: [1000
Brg Radial Cir Cb; |0.03 {mm) —a ]
Lubricant Cynamic Viscosity: |&.493 (cPoise)

Mumber of Pads: |2 Density: !1]'.?735 {grams,/CC)

Bearing Data for Pad & 1

Leading Edge: |10 Preload: Iﬂ' Advanced Fetaures
Trailing Edge: |170 Offset: |0 Mo

Save 1 Save As J Run Cloge

Mew | Qpen I

Fig. A. 16 Input data of bearing type effect (2-axial groove bearing compressor side; preload=0; offset=0)



Comment: IBehind bearing furbine side)

Coordinates: |Star1dard Coordinates (4-Y) ;I Load Angle: |270 degree
Bearing Type: |2 - Two Awial Groove ;I K and C Coordinate Angle: |0 degree
Analysis Option: |Cur15tarrt Viscosity LI — Bearing Load = W0 = W1x RFM + W2x RPM™2 ——

Convert |Unrts:|rd|e¢ric v| wo: |1.E?3 W1 |D w2 |D

Pudal Length L: |6 m
- {rm) Rotor Speeds (RPM) [~ Additional Speeds

Joumnal Dia. D: I'E-553 {mm) Start: I‘ID{}D{] End: IZDDDD'I] Inc.: I'IDD'D

Radial CIr Ch: |D.03|
3 fadal Cr e Lubricant Cynamic Viscosity: I'E.-iﬂ.'l (cPoise)
Number of Pads: I2 Density: IU-WRE {grame./CC)

Bearing Data for Pad # 1

Leading Edge: I'H] Preload: ID e P s
Trailing Edge: I'l?ﬂ Oiffset: ID Mo

Mew | Open | Save | Save As | Run | Close

Fig. A. 17 Input data of bearing type effect (2-axial groove bearing turbine side; preload=0; offset=0)

Comment: IFrorrt bearing {Compressor side)

Coordinates: IStandard Coordinates (-1} ;I Load Angle: |270 degree
Bearing Type: |4 - Offset Halves ;I K and C Coordinate Angle: |0 degree

Analysis Option: IConstarrt Viscosity LI

—Bearing Load = W0 +W1x BPM = W2x RPM™2 —0—

Convert |Unrts:|ru1e¢ric "I W |411821 W1: |ﬂ w2 |u

fual Length L: IE
LE (mm) Rotor Speeds (RPM) | Additional Speeds
Joumal Dia. D: Iﬁm {mm) Start: [10000 End: [200000  Inc.: [1000
Erg Radial Cir Ch:; |0.03 {mm})
Lubricant Cynamic Viscosity: |6.433 {cPoise)
MNumber of Pads: I2 Density: |0.7785 {grams,/CC)

Bearing Data for Pad #1

Leading Edge: IH] Preload: III].E Advanced Fetaures
Trailing Edge: I'l_-"'ﬂ Offset: III]E1 Mo

Mew | Cpen | Save | Save As Run Close

Fig. A. 18 Input data of bearing type effect (offset-halves bearing compressor side; preload=0.5; offset=0.8)
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Comment: IBehind bearing furbine side)

Coordinates: IStandard Coordinates (¥-Y) LI Load Angle:|270 degree
Bearing Type: |4 - Offset Halves ;I K and C Coordinate &ngle: |0 degres

Anahysis Option: IConstarrt Viscosity LI

Convert |Un'rts:||'l-l'|e¢ric vI WO I'I.E?E Wi: ID Wa ID

— Bearing Load = W0 +W1x RPM = W2x RPM™2 —08—

Axial Length L: |6
al Lengt {mm) Rotor Speeds (RPM) | Additional Speeds
Joumal Dia. D: |8.333 {mm) star: [10000 End: [200000 " inc: [1000
Radial CIr Cb: |D.DEH m
By fom) Lubricant Cynamic Viscosity: I'E.-iﬂf:ll {cPaise)
Mumber of Pads: I2 Density: |0.7785 {grams/CC)

Bearing Data for Fad # 1

Leading Edge: IH] Preload: ID.E Advanced Fetaures
Trailing Edge: I'I?ﬂ Offset: ID.E No

Mew | Open | Save | Save As | Run | Close

Fig. A. 19 Input data of bearing type effect (offset-halves bearing turbine side; preload=0.5; offset=0.8)

Comment: Ifrorrtbearing (compressor side)

Coordinates: IStandard Coordinates (%-Y) ;I Load Angle: |270 degree
Bearing Type: |5 - Three Lobe LI K and C Coordinate Angle: [0 degree

Anahysis Option: |Cunstarrt Vigcosity ;I

—Bearing Load = W0 + W1x RPM = W2x RPM™2 —a8—

Convert |Unrts:|w|e-tnc -] WO |411821 Wi |D w2 |D

Podal Length L: I'E m
o o) Rotor Speeds (RPM) [T Addtional Speeds
Joumal Dia. D: [-933 (mm) Start: [10000 End: [200000  inc.: [1000
Brg Radial CIr Ch: |0.03 {mm}) _ _ _ .
Lubricart Cymamic Viscosity: I'E.453 {cPoise)

Mumber of Pads: |3 Density: Iﬂ-??i'ﬁ {grams/CC)

Bearing Data for Pad # 1

Leading Edge: |1D'|] Preload: ID.E el Fr e
Trailing Edage: IZ'DU Offset: ID.E Mo

Save | Save fs

MNew | COpen | Run Close

Fig. A. 20 Input data of bearing type effect (3 lobe bearing compressor side; preload=0.5; offset=0.8)
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Comment: IEehind bearing turbine side)

Coordinates: IStandard Coordinates (%-Y) LI Load Angle: |270 degree
Bearing Type: |5 - Three Lobe j K and C Coordinate Angle: [0 degres

Analysis Option: IConstarrt Viscosity ;I —Bearing Load = W0 + W1x RPM =+ W2x RPM™2 ——

Convert |Llr1'rts:ll'u'letric vI Wi ITEH W1 ID w2 ID

Foial Length L: |6 m
o {mm) Rotor Speeds (RPM) [~ Addtional Speeds
Joumal Dia. D: [-933 (mm) Start: [10000 End: [200000  inc.: [1000
Brg Radial CIr Cb: |ﬂ.03| {mm)
Lubricart Chynamic Viscosity: |5.453 {cPoise)
Mumber of Pads: |3 Density: |0.7785 {grams/CC)

Bearing Data for Pad # 1

Leading Edge: I'IDD Preload: ID.E Advanced Fetaures
Trailing Edge: IZ'DD Cfffset: ID.E Mo

Save | Save fsz | Run | Close |

Mew | Open |

Fig. A. 21 Input data of bearing type effect (3 lobe bearing turbine side; preload=0.5; offset=0.8)

Comment: IFrorrt bearing (Compressor side)

Coordinates: IStandard Coordinates (¥-Y) LI Load Angle: [270 degree
Bearing Type: |6 - Four Lobe ~|  KandC Coordinate Angle: |0 degree

Analysis Option: ICcnstarrt Viscosity j

Convert |Ur1it5:II'U'|e‘tric v| W I-ﬂ.'ISCZ'I Wi: ID W2 ID

— Bearing Load = W0 + W1x RPM + W2x RFM™2 ——

Fodial Length L: I'E m
= mm) Ruotor Speeds (RFM) [T Addtional Speeds
Joumal Dia. D: |e_553 mm) Start: [10000 End: [200000  Inc.: [1000
Brg Radial Cir Cb: [0.03 {mm)
Lubricant Cynamic Viscosity: |6.433 {cPoise)
Mumber of Pads: I‘i Denstty: [0.7785 {grams/CC)

Bearing Data for Pad # 1

Leading Edge: |5‘|] Preload: ID.E Achreiced Ftaes
Trailing Edge: |12'|] (Offset: ID.E Mo

Save | Save fs Run Close

Mew | Open |

Fig. A. 22 Input data of bearing type effect (4 lobe bearing compressor side; preload=0.5; offset=0.8)
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Comment: IEehind bearing {furbine side)

Coordinates: |Star1dard Coordinates (%-Y) ;I Load Angle: [£70 degree
Bearing Type: I'B - Four Lobe ﬂ K and C Coordinate Angle: |0 degree

Anahysig Option: |Cunstarrt Viscosity LI

—Bearing Load = W0 + W1x RPM + W2x RFM™2 —8——

Convert |Ur1'rt5:|Me¢ric vl W0: I'I.'E?S Wi: ID W2 ID

Puial Length L: |6 m
- {rom) Rotor Speeds (RPM) [ Additional Speeds
Joumal Dia. D: [6.393 mm) start: [10000 End: [200000  Inc.: [1000
Brg Radial Cir Cb: |ﬂ.03| {mm)
Lubricant Dynamic Viscosity: IE.433 {cPoise)
Mumber of Pads: |4 Density: |0.7785 {grams/CC)

Bearing Data for Pad # 1

Leading Edge: Iﬁ'ﬂ Preload: ID.E D Ty
Trailing Edge: |'|2'|] Offaet: ID.E Mo

Save | Save Az Run Cloge

Mew | Cpen |

Fig. A. 23 Input data of bearing type effect (4 lobe bearing turbine side; preload=0.5; offset=0.8)
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Appendix B

Figure B.1 through B.4 depict the shaft elements input of rotor-bearing system analysis.

Hoial Forces ] Static Loads ] Constraints ] Misalignments ] Shaft Bow ] Time Forcing ] Harmonics ] Torsional/Awial ]
Units/Description ] Material Shaft Elements l Disks ] Unbalance ] Eearings ] Supports ] Foundation ] User's Elements ]

Shaft: 1of 1 Starting Station #: |1 Add Shat | Del Shaft | Previous | Next |
Speed Ratio: |1 Auial Distance: |0 Y Distance: (0 Import “xls | Export s
Comment: |
Ele [Sub[Mat]tev] Length [ MassiD | Mass0D [ stfiD [ stifon [ Comments -
1 1 1 1 1] 224 1] 369 a a
211 2 1 710 3 0 4 0 0 )
3 1 221 3 4 7B 7B a Mut
4 1 3 1 1] 0.78 1] 4 1] 1]
5 1 i 21 0.7 4 8 a a Mut
B 1 4 1 1] 322 1] 4 1] 1]
7 1 4 2 1 322 4 8 a a Mut
8 2 1 1 1] 48 0 45 1] 1]
q 2 1 5 1 4.8 4.6 1 0 i Compressor
10 2 2 1 1] 5 1] 45 1] 1]
11 2 -2 5 1 5 46 ik 46 1265 Compressor
12 2 3 1 0 5 1] 45 1] 1]
13 2 -3 5 1 3 45 1265 46 15 Compressor
14 2 4 1 1] 3.95 1] 45 1] 1]
15 2 -4 5 1 395 45 15 46 195 Compressor
16 2 5 1 0 1.84 a0 45 1] a
17 2 ] 5 1 1.84 45 19.5 46 23 Compressor_CG
18 3 1 1 1] 4.36 1] 45 1] 1]
19 3 -1 5} 1 436 45 23 46 33 Compressor
0| 3 2 i a 1.05 a 48 a a -
Insert Row Delete Row ReMumber | Copy & F'astel Unit:(4) - Length, Diameter: mm
Save | Save Az | Cloze | Help

Fig. B. 1 Input data of rotor-bearing analysis model (shaft elements 1-20)



Huial Forces ] Static Loads ] Constraints ] Misalignments ] Shaft Bow ] Time Forcing ] Hamonics ] Torsional / Puial ]
Units/Description ] Material ~ Shaft Elements ]Disks ] Unbalance ] Bearings ] Supports ] Foundation ] \User's Elements ]

Shaft: 1of 1 Staring Station #: [T Add Shaft | DelShat | Previous | Next |
Speed Ratio: |1 Modal Distance: |0 ¥ Distance: |0 Import *xls | Export *xds
Comment: |
Ele [Sub[Mat]lev] Lengh [ MassiD | MassOD | Sifi0 [ Stf0D [ Comments B
21 3 2 5 1 1.05 46 4395 1] 0 Compressor
22 3 3 1 1] 1.8 a 4E 0 1] —
23 3 -3 ] 1 1.8 48 18 4B 128 Compreszor
24 4 1 1 1] 09 a 4E 0 a
25 4 1 31 09 48 8.3 0 a Thrust collar
26 4 2 1 a 14 a 48 0 a
27 4 2 3 1 1.4 4.6 9.8 1] 1] Thiust collar
28 4 3 1 1] 21 0 45 0 1]
29 4 3 3 1 21 4.6 8.3 a0 i) Thiust collar
30 4 4 1 1] 0.95 0 45 0 i)
il 4 4 31 0.95 46 16.8 0 0 Thiuszt collar
32 4 5 1 0 1.95 a 4E 0 a
33 4 5 31 1.95 46 10 0 a Thiust collar
34 4 [ 1 1] 16 a 4E 0 a
) 4 B 31 16 46 12 0 a Thiust collar
3k 4 7 1 1] A a 4E 0 a
7 4 7 3 1 A 46 g 1] 0 Thirust collar
38 4 g 1 0 1.46 a 4B 0 a
ez} 4 g 3 1 1.46 4.6 11.96 1] 1] Thiust washer
40 5 1 1 a0 2.5 0 £.93 0 1] shaft -
Insert Row Delete Row ReMNumber | Copy & Pastel Unit:{4) - Length, Diameter: mm
Save | Save As | Close | Help

Fig. B. 2 Input data of rotor-bearing analysis model (shaft elements 21-40)

Fuial Forces ] Static Loads ] Constraints ] Mizalignments ] Shaft Bow ] Time Forcing ] Hamonics ] Torsional/ Axial ]
Units/Description ] Material ~ Shaft Bements ] Disks ] Unbalance ] Bearings ] Supparts ] Foundation ] User's Elements ]

Shaft: 1of 1 Starting Station 2 [ Add Shaft | DelShaft | Previous | Newt |
Speed Ratio: |1 Podal Distance: |0 Y Distance: [0 Import “xds | Export *xds
Comment: |
Ele [Gub|Mat[lev] Lenath | MassiD | Mass0D | Gt | SHFOD | Comments -
41 ] 2 1 3 0 E.99 0 0
42 3 1 1 0 3 0 £.99 0 0 bearingl
43 g 2 1 0 368 0 £.99 0 0 —
44 3 3 1 a 3E8 0 E.99 0 1}
45 3 4 1 0 388 0 E.99 0 1}
46 g 5 1 0 3.88 0 £.99 0 0
47 3 E 1 a 388 0 E.99 0 1}
43 7 1 1 0 34 0 E.99 0 1} beanngZ
43 7 2 1 0 34 0 £.99 0 0
50 g 1 1 a 388 0 E.99 0 1}
51 g -2 1 0 22 0 E.99 0 1338 shaft
52 g 3 1 0 08 0 1338 0 0
5g a 4 1 a 03 0 13 0 0
54 9 1 8 0 1.1 0 1338 0 1} Turbine
B5 9 2 g 0 1.2 E 1338 0 0 Turbire
o] 9 3 a a 13 8 11.55 0 0 Turbine
57 9 4 8 0 45 8 1338 0 1} Turbine
Jats] 9 A g 0 1.8 9 1338 9 21 Turbire
53 | 10 1 a 0 0.8s 9 4502 0 0 Turbine
g0 | 10 -2 8 0 22 0 42 0 3 Turhine -
Insert Row Delete Row ReMNumber | Copy & Pastel Urit:(4) - Length, Diameter: mm
Save | Save As | Close | Help

Fig. B. 3 Input data of rotor-bearing analysis model (shaft elements 41-60)



Hodal Forces l Static Loads ] Constraints ] Misalignments ] Shaft Bow l Time Forcing ] Hammonics l Torsional/fedal ]
Unitz/Description ] Material

Shaft Bements ] Disks ] Unbalance ] Bearings ] Supports ] Foundation ] User's Elements ]

Shaft: 1of 1 Starting Station #: [1 Add Shaft |  Del Shaft | Previous | Net |
Speed Ratio: |1 fodal Distance: |0 Y Distance: |0 Import “xds | Export *xs
Comment:|
Ele [Sub[Mat[Lev] Length | MassiD | MassoD | seifiD | SO0 | Comments -
Bl 3 & 0 2.97 ] T 0 261 Tubine
Bl 1 1 & o0 273 1] 261 0 223 Tubine _CG
B3] 1 2 & 0 45 1] 223 0 15 Turbine
B4 1 3 & 0 54 1] 15 i 1095  Turhine —
5| 11 4 & 0 5 1] 10.95 i ] Turbine
|11 5 & 0 3 1] 10.95 i ] Turbine
|11 & 8 0 3.42 i 10.95 0 82 Tubine
£
59
70
71
72
73
74
75
75
77
78
79
&0 -
Insert Row Delete Row F{eNurnber| Cow&Pastel Unit:{4) - Length, Diameter: mm

Fig. B. 4 Input data of rotor-bearing analysis model (shaft elements 61-67)

Figure B.5 depict the unbalance input of rotor-bearing system analysis. Figure B.6 depict the

eigenvalue analysis input of rotor-bearing system analysis.
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Huial Forces I Static Loads I Constraints I Misalignments | Shaft Bow I Time Forcing I Hamonics I Torsional /fudal I

Units/Description I

Material | Shaft Elements | Disks

Unbalance

Import *xs |

| Bearings I Supports | Foundation I User's Elements

Export *xls |

Ele | Sub |T|,||:|e|

Left Amp.

| Left Ang. |

Right &rip.

| Riight &na. |

Comments

[w

2 1
3
0
1

00| = (O | e (D

3
1
3

] 0,000
00001
0,000

]

0

] 0
] 0
] 0

0

0

0
0.00M

]

o OO

Insert Row

Delete Row

Unit:{4) - Type 0 (1): Mass (Magnet) Unbalance, Amp: kg-mm (M), Phase: deg

Save | Save As | Close | Help
Fig. B. 5 Input data of rotor-bearing analysis model (unbalance)
 Transient Analysis ~ Gravity @) ——
Shaft Element Effect l— Time Frequency
’7|_ = sl_ " - RPM: |100000 Domain Domain 2 ID—
¥ Rotatory Inetia W Shear Deformation [v i G :
b e Epeic : I Linear Startup: 0 - 200000 pm, 0 - 0.05 sec
Static Deflection r~Critical Speed Map gy ID— ¥ Mass Unbalance Y: |-G806.6
[~ Constrained Bearing Stations Spin/Whir Ratio: |1 ’ [~ Const. Unbalance
ing: zZ o
Bearing K - Min: [1000 Ending: [0.05 I Shaft Bow |
r—Critical Speed Analysis [~ Disk Skew
Increment: IZB‘DDB ) None zero Gz
) . ID— Npts: {50 Max: I'IeH]DS ¥ Gravity (X.Y) Vertical Rotor
STl RETE Soktion Method | [ Gravity @)
Stiffness to be varied at )
No. of Modes: |5 ] I Newmark-beta ¥ Static Loads
Bearings: |N| T I Time Forcing
: . ” I o l o
Stiffness: IK‘“ vl I~ Allow Bearings in Series Initizl Cs: T [T Misalignment
—Whirl Speed and Stability Analysis |~ Steady State Synchronous Response Analysis Steady State Hamonic Excitation
RPM-Starting: IZDDD RPM-Starting: IZDDD Effects: RPM-Starting: ID
Ending: [200000 Ending: [200000 | |V, Mass Unbalance Ending: [0 Aun
—— ————— ¥ Const. Unbalance
Increment: 2000 Increment: (2000 [~ Shaft Bow Increment: I‘:l
No. of Modes: I'”:l Excitation Shaft: |1 ™ Disk Skew Excitation Shaft: I‘I
. Cancel
V¥ Al Synchronized Shafts I Misalignment [~ All Shafts with same speed

Speed (RPM): |D Acceleration - X: |0

r— Steady Maneuvers (Base Constant Translational Acceleration and/or Tum

Batal

Rate)

Y: I‘:l

Tum Rate - X: Iﬂ Y: ID Ref Pos: ID

Fig. B. 6 Input data of rotor-bearing analysis
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